Search results for "Gromov-hyperbolisuus"
showing 2 items of 2 documents
Quasihyperbolic boundary condition: Compactness of the inner boundary
2011
We prove that if a metric space satisfies a suitable growth condition in the quasihyperbolic metric and the Gehring–Hayman theorem in the original metric, then the inner boundary of the space is homeomorphic to the Gromov boundary. Thus, the inner boundary is compact. peerReviewed
Gromov-hyperboliset ryhmät
2016
Meeri Martimo, Gromov-hyperboliset ryhmät (engl. Gromov-hyperbolic groups), matematiikan pro gradu -tutkielma, 51 s., Jyväskylän yliopisto, Matematiikan ja tilastotieteen laitos, syksy 2016. Tässä tutkielmassa käsitellään Gromov-hyperbolisia ryhmiä, jotka ovat geometrisen ryhmäteorian tutkimuskohde. Geometrinen ryhmäteoria on melko uusi matematiikan suuntaus, ja 1980-luvulla Gromov-hyperboliset ryhmät kehittänyt ranskalaisvenäläinen matemaatikko Mikhail Gromov yksi sen uranuurtajista. Gromov-hyperbolisuus määritellään ensin metrisille avaruuksille tietyllä tavalla ohuiden kolmioiden avulla. Kolmiot ovat vaaditulla tavalla ohuita esimerkiksi hyperbolisissa avaruuksissa, mutta eivät reaaliaks…