Search results for "Ground State"
showing 10 items of 928 documents
Observable geometric phase induced by a cyclically evolving dissipative process
2006
In a prevous paper (Phys. Rev. Lett. 96, 150403 (2006)) we have proposed a new way to generate an observable geometric phase on a quantum system by means of a completely incoherent phenomenon. The basic idea was to force the ground state of the system to evolve ciclically by "adiabatically" manipulating the environment with which it interacts. The specific scheme we have previously analyzed, consisting of a multilevel atom interacting with a broad-band squeezed vacuum bosonic bath whose squeezing parameters are smoothly changed in time along a closed loop, is here solved in a more direct way. This new solution emphasizes how the geometric phase on the ground state of the system is indeed du…
Orthogonality Catastrophe and Decoherence in a Trapped-Fermion Environment
2012
The Fermi edge singularity and the Anderson orthogonality catastrophe describe the universal physics which occurs when a Fermi sea is locally quenched by the sudden switching of a scattering potential, leading to a brutal disturbance of its ground state. We demonstrate that the effect can be seen in the controllable domain of ultracold trapped gases by providing an analytic description of the out-of-equilibrium response to an atomic impurity, both at zero and at finite temperature. Furthermore, we link the transient behavior of the gas to the decoherence of the impurity, and, in particular to the amount of non-markovianity of its dynamics.
Charge distribution and optical properties of and F centres in crystals
1997
Results of quantum chemical calculations for the and F centres in cubic and orthorhombic phases of a perovskite ferroelectric are presented and analysed in the light of existing experimental literature. It is shown that one (two) electrons of the and F centres, respectively, are considerably delocalized, even in the ground state of defects, over the two Nb atoms nearest to the O vacancy, and other close atoms. They resemble more electron defects in partly covalent crystals (the so-called centre) than F-type centres in ionic MgO crystals. We predict two or three absorption bands (depending on the crystalline phase) for each of the defects. The calculated absorption energies for the centre ar…
High nuclearity mixed-valence magnetic clusters: theoretical study of the spin coupling in the C602− fulleride ion
1998
Abstract The problem of delocalization of a pair of electrons over the fullerene C 60 is considered, with the aim of elucidating the nature of the ground spin state, as well as the structure of the low-lying energy levels in this mixed-valence molecule C 60 2− . A model that considers the Coulomb interactions between the two extra electrons, as well as the two single-electron transfer processes involved in the electron delocalization, is developed. The influence of these electronic parameters on the spectrum of the low-lying energy levels is discussed. We find that the ground state is always a spin singlet, whatever the relative values of these parameters are.
Phase diagram of the quarter-filled extended Hubbard model on a two-leg ladder
2000
We investigate the ground-state phase diagram of the quarter-filled Hubbard ladder with nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. The ground-state is homogeneous at small V, a ``checkerboard'' charge--ordered insulator at large V and not too small on-site Coulomb repulsion U, and is phase-separated for moderate or large V and small U. The zero-temperature transition between the homogeneous and the charge-ordered phase is found to be second order. In both the homogeneous and the charge-ordered phases the existence of a spin gap mainly depends on the ratio of interchain to intrachain hopping. In the second part of the paper, we construct an…
Stripe formation in doped Hubbard ladders
2004
We investigate the formation of stripes in $7\chunks \times 6$ Hubbard ladders with $4\chunks$ holes doped away from half filling using the density-matrix renormalization group (DMRG) method. A parallelized code allows us to keep enough density-matrix eigenstates (up to $m=8000$) and to study sufficiently large systems (with up to $7\chunks = 21$ rungs) to extrapolate the stripe amplitude to the limits of vanishing DMRG truncation error and infinitely long ladders. Our work gives strong evidence that stripes exist in the ground state for strong coupling ($U=12t$) but that the structures found in the hole density at weaker coupling ($U=3t$) are an artifact of the DMRG approach.
FeMoO4 Revisited: Crosslike 90° Noncollinear Antiferromagnetic Structure Caused by Dzyaloshinskii–Moriya Interaction
2021
The ground state of Fe2+ (S = 2) in α- and β-FeMoO4 is investigated by experiments including X-ray diffraction, Raman scattering, and 57Fe–Mossbauer spectroscopy below 300 K and evaluated by theore...
Microfluidic Synthesis of Highly Shape-Anisotropic Particles from Liquid Crystalline Elastomers with Defined Director Field Configurations
2011
In this article, we present the synthesis of highly shape-anisotropic, micrometer-sized particles from liquid crystalline elastomers, which have the ability to reversibly change their shape in response to a certain external stimulus. For their preparation, we utilized a microfluidic setup. We succeeded in preparing sets of particles with differing degrees of shape anisotropy in their ground state including highly anisotropic fiber-like objects. All samples produced movement during the phase transition from the nematic to the isotropic phase of the liquid crystal. Depending on the direction of this shape change, we classified the samples in two groups. One type showed a contraction, while th…
Magic numbers, excitation levels, and other properties of small neutral math clusters (N < 50)
2006
The ground-state energies and the radial and pair distribution functions of neutral math clusters are systematically calculated by the diffusion Monte Carlo method in steps of one math atom from 3 to 50 atoms. In addition the chemical potential and the low-lying excitation levels of each cluster are determined with high precision. These calculations reveal that the “magic numbers” observed in experimental math cluster size distributions, measured for free jet gas expansions by nondestructive matter-wave diffraction, are not caused by enhanced stabilities. Instead they are explained in terms of an enhanced growth due to sharp peaks in the equilibrium concentrations in the early part of the e…
Electronic structure of the glyoxalbis(2-hydroxyanil) (gha) ligand in [CoIII(gha)(PPh3)2]+: radical vs. non-radical states
2008
The synthesis, structure and spectroscopic properties of a complex salt [CoIII(gha)(PPh3)2][CoIICl3(PPh3)]·C2H5OH (1) are reported; gha = glyoxalbis(2-hydroxyanil). This is the first single crystal X-ray structure of a (gha)2− complex with a transition element. Though the determined bond parameters and UV-Vis spectroscopic data correlate well with a diradical description for the cation in 1, detailed electronic structure calculations using density functional theory confirm that [Co(gha)(PPh3)2]+ can be described as a closed shell singlet species which nevertheless displays an interesting electronic structure with significant electron transfer to the formally unoccupied LUMO of the square pl…