Search results for "Group theory"

showing 10 items of 703 documents

Word classes and the scope of lexical flexibility in Tongan

2017

Abstract Tongan is an Oceanic language belonging to the Polynesian subgroup. Based on previous work (Churchward 1953, Tchekhoff 1981, Broschart 1997), Tongan has been classified as a 'flexible' language by various typological approaches on word classes (Hengeveld 1992, Rijkhoff 1998, Croft 2001). This means that lexical items are per se not categorised in terms of major word classes, but they can function as noun, verb, adjective and manner adverb without morphosyntactic derivation. However, not all lexemes are entirely flexible occurring within all these constructions. So the crucial issue of how flexible Tongan really is remains. This question will be addressed by a survey based on a comb…

060201 languages & linguisticsLinguistics and LanguageCommunicationVerb06 humanities and the artsAdverbPart of speechLanguage and LinguisticsLexical itemLinguistics030507 speech-language pathology & audiology03 medical and health sciencesNoun0602 languages and literature0305 other medical sciencePsychologyAdjectiveScope (computer science)Word (group theory)Lexical flexibility in Oceanic languages
researchProduct

Lie Algebras Generated by Extremal Elements

1999

We study Lie algebras generated by extremal elements (i.e., elements spanning inner ideals of L) over a field of characteristic distinct from 2. We prove that any Lie algebra generated by a finite number of extremal elements is finite dimensional. The minimal number of extremal generators for the Lie algebras of type An, Bn (n>2), Cn (n>1), Dn (n>3), En (n=6,7,8), F4 and G2 are shown to be n+1, n+1, 2n, n, 5, 5, and 4 in the respective cases. These results are related to group theoretic ones for the corresponding Chevalley groups.

17B05[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Non-associative algebraAdjoint representationGroup Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Graded Lie algebraCombinatoricsMathematics - Algebraic Geometry0103 physical sciences[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA]FOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsDiscrete mathematicsAlgebra and Number TheorySimple Lie group010102 general mathematics[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]20D06[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Rings and AlgebrasKilling formAffine Lie algebra[ MATH.MATH-RA ] Mathematics [math]/Rings and Algebras [math.RA]Lie conformal algebra[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Adjoint representation of a Lie algebraRings and Algebras (math.RA)17B05; 20D06010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Group TheoryJournal of Algebra
researchProduct

On presentations for mapping class groups of orientable surfaces via Poincaré's Polyhedron theorem and graphs of groups

2021

The mapping class group of an orientable surface with one boundary component, S, is isomorphic to a subgroup of the automorphism group of the fundamental group of S. We call these subgroups algebraic mapping class groups. An algebraic mapping class group acts on a space called ordered Auter space. We apply Poincaré's Polyhedron theorem to this action. We describe a decomposition of ordered Auter space. From these results, we deduce that the algebraic mapping class group of S is a quotient of the fundamental group of a graph of groups with, at most, two vertices and, at most, six edges. Vertex and edge groups of our graph of groups are mapping class groups of orientable surfaces with one, tw…

2010 Mathematics Subject Classification. Primary: 57N0520F05Auter spacepresentationsSecondary: 20F28automorphism groups20F34 Mapping class groups[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR][MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]
researchProduct

The average element order and the number of conjugacy classes of finite groups

2021

Abstract Let o ( G ) be the average order of the elements of G, where G is a finite group. We show that there is no polynomial lower bound for o ( G ) in terms of o ( N ) , where N ⊴ G , even when G is a prime-power order group and N is abelian. This gives a negative answer to a question of A. Jaikin-Zapirain.

20D15 20C15 20E45Finite groupPolynomialAlgebra and Number TheoryGroup (mathematics)010102 general mathematicsGroup Theory (math.GR)01 natural sciencesUpper and lower boundsElement OrderCombinatoricsConjugacy class0103 physical sciencesFOS: MathematicsOrder (group theory)010307 mathematical physics0101 mathematicsAbelian groupMathematics - Group TheoryG110 Pure MathematicsMathematics
researchProduct

Machine $B_4$

2020

We construct map $\xi$. It exhibits dense orbits for all $x\in\overline{0,1}^\omega$. We give elementary proofs for all statements.

20F10 68Q70 20B07:20B35Mathematics - Group TheoryF.1.1
researchProduct

The proof of Birman’s conjecture on singular braid monoids

2003

Let B_n be the Artin braid group on n strings with standard generators sigma_1, ..., sigma_{n-1}, and let SB_n be the singular braid monoid with generators sigma_1^{+-1}, ..., sigma_{n-1}^{+-1}, tau_1, ..., tau_{n-1}. The desingularization map is the multiplicative homomorphism eta: SB_n --> Z[B_n] defined by eta(sigma_i^{+-1}) =_i^{+-1} and eta(tau_i) = sigma_i - sigma_i^{-1}, for 1 <= i <= n-1. The purpose of the present paper is to prove Birman's conjecture, namely, that the desingularization map eta is injective.

20F36 57M25. 57M27[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Monoid[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)01 natural sciencesBirman's conjecture[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics - Geometric TopologyMathematics::Group Theory57M25. 57M27Mathematics::Category Theory[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: MathematicsBraid0101 mathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR][MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]MathematicsConjecturedesingularization010102 general mathematicsMultiplicative functionSigmaGeometric Topology (math.GT)singular braidsInjective function010101 applied mathematicsHomomorphismGeometry and TopologyMathematics - Group TheoryGeometry & Topology
researchProduct

Estimates for the differences of positive linear operators and their derivatives

2019

The present paper deals with the estimate of the differences of certain positive linear operators and their derivatives. Oxur approach involves operators defined on bounded intervals, as Bernstein operators, Kantorovich operators, genuine Bernstein-Durrmeyer operators, and Durrmeyer operators with Jacobi weights. The estimates in quantitative form are given in terms of the first modulus of continuity. In order to analyze the theoretical results in the last section, we consider some numerical examples.

41A25 41A36Applied MathematicsNumerical analysisLinear operatorsNumerical Analysis (math.NA)010103 numerical & computational mathematics01 natural sciencesModulus of continuity010101 applied mathematicsSection (fiber bundle)Mathematics - Classical Analysis and ODEsBounded functionTheory of computationClassical Analysis and ODEs (math.CA)FOS: MathematicsOrder (group theory)Applied mathematicsMathematics - Numerical Analysis0101 mathematicsAlgebra over a fieldMathematics
researchProduct

Regular orbits of actions of finite soluble groups. Applications

2019

A lo largo de esta tesis, todos los conjuntos, grupos, cuerpos y módulos considerados se suponen finitos. Consideremos un grupo G actuando sobre un conjunto no vacío Ω. Decimos que la órbita de un w ∈ Ω es regular si C G (w) = {g ∈ G : wg = w} = 1; en este caso, dicha órbita consta de |G| elementos. El estudio de órbitas regulares de grupos lineales, es decir, órbitas regulares de acciones de subgrupos de GL(V ), siendo V un espacio vectorial, es importante en el desarrollo de muchas ramas de la teoría de grupos, incluendo los grupos resolubles, teoría de representaciones y grupos de permutaciones. De hecho, la solución de algunos problemas importantes en el área como el problema k(GV ) ([2…

:MATEMÁTICAS [UNESCO]mathematicsfinite groupgroup theoryactionalgebraregular orbitUNESCO::MATEMÁTICAS
researchProduct

Some results on locally finite groups

2017

En esta tesis se presentan algunos resultados sobre p-nilpotencia y permutabilidad en grupos localmente finitos. Está estructurada en cinco capítulos. El primer capítulo, que tiene carácter introductorio: contiene definiciones y resultados conocidos que serán utilizados en los capítulos sucesivos. Por tratarse de resultados ya conocidos, se introducen con referencias y sin demostraciones. En el capítulo 2 se trata la p-nilpotencia en grupos hiperfinitos, donde p es un primo. Los resultados presentados se encuentran publicados en el siguiente artículo: Ballester-Bolinches, A.; Camp-Mora, S.; Spagnuolo, F., "On p-nilpotency of hyperfinite groups". Monatshefte f¨ur Mathematik, 176, no. 4, 497–…

:MATEMÁTICAS::Álgebra::Grupos generalidades [UNESCO]UNESCO::MATEMÁTICAS::Álgebra::Grupos generalidadesRanks of groupsp-nilpotencyGroup theorySupersoluble groupsLocally finite groups
researchProduct

On the arithmetic and geometry of binary Hamiltonian forms

2011

Given an indefinite binary quaternionic Hermitian form $f$ with coefficients in a maximal order of a definite quaternion algebra over $\mathbb Q$, we give a precise asymptotic equivalent to the number of nonequivalent representations, satisfying some congruence properties, of the rational integers with absolute value at most $s$ by $f$, as $s$ tends to $+\infty$. We compute the volumes of hyperbolic 5-manifolds constructed by quaternions using Eisenstein series. In the Appendix, V. Emery computes these volumes using Prasad's general formula. We use hyperbolic geometry in dimension 5 to describe the reduction theory of both definite and indefinite binary quaternionic Hermitian forms.

AMS : 11E39 20G20 11R52 53A35 11N45 15A21 11F06 20H10representation of integersHyperbolic geometry20H10Geometry15A2101 natural sciencesHyperbolic volume[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]11E39 20G20 11R52 53A35 11N45 15A21 11F06 20H10symbols.namesake11E390103 physical sciencesEisenstein seriesCongruence (manifolds)group of automorphs0101 mathematics20G20Quaternion11R52[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]Mathematicsreduction theoryDiscrete mathematicsAlgebra and Number TheoryQuaternion algebraMathematics - Number TheorySesquilinear formta111010102 general mathematicsHamilton-Bianchi groupHermitian matrix53A35[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]11F06[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbols010307 mathematical physicsMathematics::Differential Geometry[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]Hamilton–Bianchi group11N45binary Hamiltonian formhyperbolic volume[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]
researchProduct