Search results for "HAPLOINSUFFICIENCY"

showing 10 items of 54 documents

The severe phenotype of Diamond-Blackfan anemia is modulated by heat shock protein 70.

2017

International audience; Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure syndrome that exhibits an erythroid-specific phenotype. In at least 70% of cases, DBA is related to a haploinsufficient germ line mutation in a ribosomal protein (RP) gene. Additional cases have been associated with mutations in GATA1. We have previously established that the RPL11+/Mut phenotype is more severe than RPS19+/Mut phenotype because of delayed erythroid differentiation and increased apoptosis of RPL11+/Mut erythroid progenitors. The HSP70 protein is known to protect GATA1, the major erythroid transcription factor, from caspase-3 mediated cleavage during normal erythroid differentiation.…

0301 basic medicinecongenital hereditary and neonatal diseases and abnormalitiesIdentificationApoptosis-Inducing FactorGata1 MutationsInhibits ApoptosisBiologyHsp7003 medical and health sciencesGermline mutationRed Cells Iron and Erythropoiesishemic and lymphatic diseasesmedicine[ SDV.MHEP.HEM ] Life Sciences [q-bio]/Human health and pathology/HematologyNuclear ImportErythropoiesisDiamond–Blackfan anemiaHuman ErythroblastsBone marrow failure[SDV.MHEP.HEM]Life Sciences [q-bio]/Human health and pathology/HematologyGATA1Hematologymedicine.diseasePhenotypeMolecular biology3. Good healthHsp70030104 developmental biologyRibosomal-ProteinsProtein Gene DeletionsErythropoiesisHaploinsufficiencyBlood advances
researchProduct

Search for a gene responsible for Floating-Harbor syndrome on chromosome 12q15q21.1.

2012

International audience; Floating-Harbor syndrome (FHS) is characterized by characteristic facial dysmorphism, short stature with delayed bone age, and expressive language delay. To date, the gene(s) responsible for FHS is (are) unknown and the diagnosis is only made on the basis of the clinical phenotype. The majority of cases appeared to be sporadic but rare cases following autosomal dominant inheritance have been reported. We identified a 4.7 Mb de novo 12q15-q21.1 microdeletion in a patient with FHS and intellectual deficiency. Pangenomic 244K array-CGH performed in a series of 12 patients with FHS failed to identify overlapping deletions. We hypothesized that FHS is caused by haploinsuf…

AdultHeart Septal Defects VentricularMaleCandidate geneFloating Harbor syndrome[SDV.GEN] Life Sciences [q-bio]/GeneticsHaploinsufficiencyBiologyBioinformaticsShort statureCraniofacial Abnormalities03 medical and health sciences12q15q21.1 microdeletion[SDV.BDD] Life Sciences [q-bio]/Development BiologyGeneticsmedicineHumansAbnormalities MultipleGenetic Predisposition to Disease[ SDV.BDD ] Life Sciences [q-bio]/Development BiologyChild[SDV.BDD]Life Sciences [q-bio]/Development BiologyGenetics (clinical)Growth Disorders030304 developmental biologySequence DeletionPhenocopyGenetics0303 health sciencesComparative Genomic Hybridization[SDV.GEN]Life Sciences [q-bio]/GeneticsChromosomes Human Pair 12Genetic heterogeneity030305 genetics & heredityChromosomeHigh-Throughput Nucleotide Sequencinghigh-throughput sequencingmedicine.disease3. Good healthPhenotypeFloating–Harbor syndromeChild PreschoolMutation (genetic algorithm)Femalemedicine.symptomHaploinsufficiency[ SDV.GEN ] Life Sciences [q-bio]/Genetics
researchProduct

Haploinsufficiency of the Primary Familial Brain Calcification Gene SLC20A2 Mediated by Disruption of a Regulatory Element

2020

OBJECTIVE Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with diverse neuropsychiatric expression. Five genes were reported as PFBC causative when carrying pathogenic variants. Haploinsufficiency of SLC20A2, which encodes an inorganic phosphate importer, is a major cause of autosomal-dominant PFBC. However, PFBC remains genetically unexplained in a proportion of patients, suggesting the existence of additional genes or cryptic mutations. We analyzed exome sequencing data of 71 unrelated, genetically unexplained PFBC patients with the aim to detect copy number variations that may disrupt the expression of core PFBC-causing genes. METHODS Afte…

0301 basic medicineBrain DiseasesDNA Copy Number VariationsSodium-Phosphate Cotransporter Proteins Type IIIHEK 293 cellsBrainHaploinsufficiencyBiologyMolecular biologyReverse transcriptase03 medical and health sciencesHEK293 Cells030104 developmental biology0302 clinical medicineNeurologyMutationHumansNeurology (clinical)Copy-number variationAlleleHaploinsufficiencyEnhancerGene030217 neurology & neurosurgeryExome sequencingMovement Disorders
researchProduct

Autosomal recessive variations of TBX6 , from congenital scoliosis to spondylocostal dysostosis

2017

International audience; Proximal 16p11.2 microdeletions are recurrent microdeletions with an overall prevalence of 0.03%. In patients with segmentation defects of the vertebra (SDV), a burden of this microdeletion was observed with TBX6 as a candidate gene for SDV. In a published cohort of patients with congenital scoliosis (CS), TBX6 haploinsufficiency was compound heterozygous with a common haplotype. Besides, a single three-generation family with spondylocostal dysostosis (SCD) was reported with a heterozygous stop-loss of TBX6. These observations questioned both on the inheritance mode and on the variable expressivity associated with TBX6-associated SDV. Based on a national recruitment …

0301 basic medicineMalePediatricsmedicine.medical_specialtyCandidate geneGenotypeScoliosis030105 genetics & heredityCompound heterozygosity03 medical and health sciences[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineInheritance ModeMissense mutationHumansAbnormalities MultipleGenetic Predisposition to DiseaseChildGenetics (clinical)GeneticsHernia Diaphragmaticbusiness.industryHaplotypeInfantmedicine.diseaseSpondylocostal dysostosisSpine3. Good healthPedigree030104 developmental biologyHaplotypesScoliosisChild PreschoolMutationFemalebusinessHaploinsufficiencyT-Box Domain Proteins[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction

2021

AbstractWhereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene,SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carryingSATB1variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression…

0301 basic medicineMaleModels MolecularMISSENSE MUTATIONSCHROMATINTranscription GeneticCellMedizinDiseaseHaploinsufficiencymedicine.disease_cause0302 clinical medicineMissense mutationde novo variantsGenetics (clinical)INTERLEUKIN-2seizuresGenetics0303 health sciencesMutationChromatin bindingneurodevelopmental disordersMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]SATB1Phenotypemedicine.anatomical_structureintellectual disabilityFemaleHaploinsufficiencyteeth abnormalitiesProtein BindingNeuroinformaticsEXPRESSIONGENESMutation MissenseBiologyBINDING PROTEINREGION03 medical and health sciencesSATB1Protein DomainsReportGeneticsmedicineHPO-based analysisHumansGenetic Association StudiesHpo-based Analysis ; Satb1 ; Cell-based Functional Assays ; De Novo Variants ; Intellectual Disability ; Neurodevelopmental Disorders ; Seizures ; Teeth Abnormalities030304 developmental biology[SDV.GEN]Life Sciences [q-bio]/GeneticsNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Matrix Attachment Region Binding Proteins030104 developmental biologyNeurodevelopmental DisordersMutationNanomedicine Radboud Institute for Molecular Life Sciences [Radboudumc 19]030217 neurology & neurosurgerycell-based functional assays
researchProduct

9q33.3q34.11 microdeletion: new contiguous gene syndrome encompassing STXBP1, LMX1B and ENG genes assessed using reverse phenotyping

2016

International audience; The increasing use of array-CGH in malformation syndromes with intellectual disability could lead to the description of new contiguous gene syndrome by the analysis of the gene content of the microdeletion and reverse phenotyping. Thanks to a national and international call for collaboration by Achropuce and Decipher, we recruited four patients carrying de novo overlapping deletions of chromosome 9q33.3q34.11, including the STXBP1, the LMX1B and the ENG genes. We restrained the selection to these three genes because the effects of their haploinsufficency are well described in the literature and easily recognizable clinically. All deletions were detected by array-CGH …

0301 basic medicineMale[ SDV.MHEP.PED ] Life Sciences [q-bio]/Human health and pathology/PediatricsHaploinsufficiencycerebral hypomyelinationwest-syndromeBioinformaticsCraniofacial Abnormalities0302 clinical medicineIntellectual disabilitySTXBP1ChildGenetics (clinical)Nail patella syndromeGeneticsEndoglinSyndrome3. Good healthdevelopmental delayPhenotypeintellectual disabilityMedical geneticsFemaleChromosome DeletionHaploinsufficiencyChromosomes Human Pair 9medicine.medical_specialtyAdolescentLIM-Homeodomain ProteinsBiologyContiguous gene syndromeArticle03 medical and health sciencesMunc18 ProteinsGenetic linkageGeneticsmedicineHumansde-novo mutations[SDV.MHEP.PED]Life Sciences [q-bio]/Human health and pathology/PediatricsdiseaseEpilepsyinfantile epileptic encephalopathyassociationdeletionsmedicine.diseaseHuman genetics030104 developmental biologynail-patella syndrome030217 neurology & neurosurgeryTranscription Factors
researchProduct

Heterozygous HMGB1 loss-of-function variants are associated with developmental delay and microcephaly

2021

International audience; 13q12.3 microdeletion syndrome is a rare cause of syndromic intellectual disability. Identification and genetic characterization of patients with 13q12.3 microdeletion syndrome continues to expand the phenotypic spectrum associated with it. Previous studies identified four genes within the approximately 300 Kb minimal critical region including two candidate protein coding genes: KATNAL1 and HMGB1. To date, no patients carrying a sequence-level variant or a single gene deletion in HMGB1 or KATNAL1 have been described. Here we report six patients with loss-of-function variants involving HMGB1 and who had phenotypic features similar to the previously described 13q12.3 m…

Male0301 basic medicineHeterozygoteMicrocephalyAdolescentDNA Copy Number VariationsLanguage delay[SDV]Life Sciences [q-bio]KaryotypeInheritance Patternschemical and pharmacologic phenomena030105 genetics & heredityBiologydysmorphic featuresloss of function mutation03 medical and health sciencesExome SequencingIntellectual disabilityGeneticsmedicineHumansGenetic Predisposition to DiseaseHMGB1 ProteinChildGeneGenetic Association StudiesIn Situ Hybridization FluorescenceGenetics (clinical)Loss functionGeneticsHMGB1FaciesExonsdevelopmental disabilitiesMicrodeletion syndromemedicine.diseasePhenotypePhenotype030104 developmental biologyChild PreschoolMicrocephalyFemaleHaploinsufficiency
researchProduct

Autosomal recessive truncatingMAB21L1mutation associated with a syndromic scrotal agenesis

2016

We report on a boy with a rare malformative association of scrotum agenesis, ophthalmological anomalies, cerebellar malformation, facial dysmorphism and global development delay. The reported patient was carrying a homozygous frameshift in MAB21L1 detected by whole-exome sequencing, considered as the most likely disease-causing variant. Mab21l1 knockout mice present a strikingly similar malformative association of ophthalmological malformations of the anterior chamber and preputial glands hypoplasia. We hypothesize that MAB21L1 haploinsufficiency cause a previously undescribed syndrome with scrotal agenesis, ophthalmological anomalies, facial dysmorphism and gross psychomotor delay as remar…

0301 basic medicinePathologymedicine.medical_specialtybusiness.industryPreputial gland030105 genetics & hereditymedicine.diseaseHypoplasiaFrameshift mutation03 medical and health sciences030104 developmental biologymedicine.anatomical_structureAgenesisScrotumGeneticsMedicinebusinessHaploinsufficiencyExomeGenetics (clinical)Exome sequencingClinical Genetics
researchProduct

Mutation Analysis of Core Binding Factor A1 in Patients with Cleidocranial Dysplasia

1999

SummaryCleidocranial dysplasia (CCD) is a dominantly inherited disorder characterized by patent fontanelles, wide cranial sutures, hypoplasia of clavicles, short stature, supernumerary teeth, and other skeletal anomalies. We recently demonstrated that mutations in the transcription factor CBFA1, on chromosome 6p21, are associated with CCD. We have now analyzed the CBFA1 gene in 42 unrelated patients with CCD. In 18 patients, mutations were detected in the coding region of the CBFA1 gene, including 8 frameshift, 2 nonsense, and 9 missense mutations, as well as 2 novel polymorphisms. A cluster of missense mutations at arginine 225 (R225) identifies this residue as crucial for CBFA1 function. …

Core binding factorRecombinant Fusion ProteinsDNA Mutational AnalysisGreen Fluorescent ProteinsMolecular Sequence DataMutation MissenseHuman malformation syndromeCore Binding Factor Alpha 1 SubunitBiologyTransfectionmedicine.disease_causeBone and BonesCleidocranial dysplasiaCell LineFrameshift mutationCBFA1GeneticsmedicineHumansMissense mutationGenetics(clinical)SupernumeraryFrameshift MutationGenetics (clinical)Sequence DeletionGeneticsMutationPolymorphism GeneticCleidocranial DysplasiaCore Binding FactorsArticlesmedicine.diseaseOsteochondrodysplasiaNeoplasm ProteinsRadiographyNuclear localizationLuminescent ProteinsPhenotypeMicroscopy FluorescenceMutation testingTranscription factorHaploinsufficiencyToothTranscription FactorsThe American Journal of Human Genetics
researchProduct

Proteomic signature of the Dravet syndrome in the genetic Scn1a-A1783V mouse model.

2021

Abstract Background Dravet syndrome is a rare, severe pediatric epileptic encephalopathy associated with intellectual and motor disabilities. Proteomic profiling in a mouse model of Dravet syndrome can provide information about the molecular consequences of the genetic deficiency and about pathophysiological mechanisms developing during the disease course. Methods A knock-in mouse model of Dravet syndrome with Scn1a haploinsufficiency was used for whole proteome, seizure, and behavioral analysis. Hippocampal tissue was dissected from two- (prior to epilepsy manifestation) and four- (following epilepsy manifestation) week-old male mice and analyzed using LC-MS/MS with label-free quantificati…

MaleProteomics0301 basic medicineProteomeHippocampusEpilepsies MyoclonicHaploinsufficiencyScn1aHippocampusSynaptic TransmissionElevated Plus Maze TestEpilepsyMice0302 clinical medicineTandem Mass Spectrometry11-beta-Hydroxysteroid Dehydrogenase Type 1Genetic epilepsyCarbon-Nitrogen LigasesGene Knock-In TechniquesGliosisNeuronal PlasticityBehavior AnimalEpileptic encephalopathyImmunohistochemistryAstrogliosisNeurologyProteomeDisease ProgressionFemaleHaploinsufficiencySignal TransductionRC321-571Dopamine and cAMP-Regulated Phosphoprotein 32Neovascularization PhysiologicNeurosciences. Biological psychiatry. NeuropsychiatryBiologyNitric Oxide03 medical and health sciencesDravet syndromemedicineAnimalsHyperthermiaSocial Behaviorras-GRF1Proteomic Profilingmedicine.diseaseVascular Endothelial Growth Factor Receptor-2NAV1.1 Voltage-Gated Sodium ChannelDisease Models Animal030104 developmental biologyRotarod Performance TestSynaptic plasticityEpileptic Encephalopathy ; Genetic Epilepsy ; Mice ; Proteome ; Scn1aCalcium-Calmodulin-Dependent Protein Kinase Type 2Open Field TestNeuroscience030217 neurology & neurosurgeryChromatography Liquid
researchProduct