Search results for "HDAC10"

showing 6 items of 6 documents

A chromatin-associated histone deacetylase from pea (Pisum sativum)

1991

Abstract A histone deacetylase activity has been found in preparation of chromatin from pea (Pisum sativum) embryonic axes. This activity readily deacetylates free histones and is somewhat specific for H2A and H2B; this property and its chromatographic behaviour allowed us to identify the enzyme with the previously described histone deacetylase HD2 (Sendra et al., Plant Mol. Biol., 11 (1988) 857). HD2 is only loosely associated to chromatin but the enzymatic activity is enhanced when chromatin adopts a folded conformation. Polyamines and divalent cations activate the enzyme, probably due to their effect on chromatin folding.

Histone deacetylase 2HDAC10food and beveragesPlant ScienceGeneral MedicineBiologyChromatinHistone H1BiochemistryHistone methyltransferaseHistone H2AGeneticsHistone deacetylaseHistone deacetylase activityAgronomy and Crop SciencePlant Science
researchProduct

Histone Deacetylase Inhibitors in the Treatment of Hematological Malignancies and Solid Tumors

2010

The human genome is epigenetically organized through a series of modifications to the histone proteins that interact with the DNA. In cancer, many of the proteins that regulate these modifications can be altered in both function and expression. One example of this is the family of histone deacetylases (HDACs), which as their name implies remove acetyl groups from the histone proteins, allowing for more condensed nucleosomal structure. HDACs have increased expression in cancer and are also believed to promote carcinogenesis through the acetylation and interaction with key transcriptional regulators. Given this, small molecule histone deacetylases inhibitors have been identified and developed…

Health Toxicology and Mutagenesislcsh:Biotechnologylcsh:MedicineReview ArticleNeoplasmslcsh:TP248.13-248.65GeneticsAnimalsHumansCancer epigeneticsMolecular BiologyHistone deacetylase 5biologyHDAC11Histone deacetylase 2HDAC10lcsh:RGeneral MedicineHistone Deacetylase InhibitorsHistoneBiochemistryAcetylationHematologic Neoplasmsbiology.proteinCancer researchMolecular MedicineHistone deacetylaseBiotechnologyJournal of Biomedicine and Biotechnology
researchProduct

Distinct Site Specificity of Two Pea Histone Deacetylase Complexes

2001

We report on the site specificity of two intact pea histone deacetylase complexes. HD1 deacetylates lysines 5 and 16 of H4 in the order K16 > K5, while in the case of H3 the preferred order is K4 >> K18 approximately K9. The specificity of the HD2 complex is markedly different. The preferred residues in H4 are K8 approximately K5 > K16, while in H3 deacetylation, the complex HD2 prefers sites 4 and 18. To obtain these results, we have used a novel procedure based on the SPOT technique, a method to synthesize peptides on membrane supports. Different sets of membranes with sequentially overlapping histone peptides containing acetylated lysines in the sites corresponding to all in vivo acetyla…

Histone deacetylase 5Histone deacetylase 2ChemistryHDAC11HDAC10PeasSAP30BiochemistryHistone DeacetylasesSubstrate SpecificityBiochemistryHistone H2AHistone deacetylase complexDeacetylase activityBiochemistry
researchProduct

Properties of the yeast nuclear histone deacetylase.

1994

A nuclear histone deacetylase from yeast was partially purified and some of its characteristics were studied. Histone deacetylase activity was stimulated in vitro by high-mobility-group nonhistone chromatin proteins 1 and 2 and ubiquitin and inhibited by spermine and spermidine, whereas n-butyrate had no significant inhibitory effect. Like the mammalian enzyme, partially purified histone deacetylase from yeast was strongly inhibited by trichostatin A. However, in crude extract preparations the yeast enzyme was not inhibited and treatment with trichostatin in vivo did not show any effect, either on the histone acetylation level or on cell viability. At low ionic strength, the enzyme can be i…

Cell NucleusHistone deacetylase 5HDAC11ChemistryHistone deacetylase 2HDAC10Cell BiologySaccharomyces cerevisiaeHydroxamic AcidsBiochemistryHistone DeacetylasesSubstrate SpecificityHistone Deacetylase InhibitorsMolecular WeightTrichostatin ABiochemistrymedicineChromatography GelHistone deacetylase activityHistone deacetylaseMolecular Biologymedicine.drugDeacetylase activityResearch ArticleThe Biochemical journal
researchProduct

The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes

2003

Regulation of gene expression by mitogen-activated protein kinases (MAPKs) is essential for proper cell adaptation to extracellular stimuli. Exposure of yeast cells to high osmolarity results in rapid activation of the MAPK Hog1, which coordinates the transcriptional programme required for cell survival on osmostress. The mechanisms by which Hog1 and MAPKs in general regulate gene expression are not completely understood, although Hog1 can modify some transcription factors. Here we propose that Hog1 induces gene expression by a mechanism that involves recruiting a specific histone deacetylase complex to the promoters of genes regulated by osmostress. Cells lacking the Rpd3-Sin3 histone deac…

Saccharomyces cerevisiae ProteinsGenes FungalSaccharomyces cerevisiaeBiologySAP30Histone DeacetylasesOsmotic PressureGene Expression Regulation FungalPromoter Regions GeneticOligonucleotide Array Sequence AnalysisHistone deacetylase 5MultidisciplinaryHistone deacetylase 2HDAC11HDAC10HDAC9Molecular biologyHDAC4Cell biologyRepressor ProteinsMutationHistone deacetylase complexRNA Polymerase IIMitogen-Activated Protein KinasesProtein BindingTranscription FactorsNature
researchProduct

Characterization of pea histone deacetylases

1988

The present paper is the first report on histone deacetylases from plants. Three enzyme fractions with histone deacetylase activity (HD0, HD1 and HD2) have been partially purified from pea (Pisum sativum) embryonic axes. They deacetylate biologically acetylated chicken histones and, to a lesser extent, chemically acetylated histones, this being a criterion of their true histone deacetylase nature. The three enzymes are able to accept nucleosomes as substrates. HD1 is not inhibited by n-butyrate up to 50 mM, whereas HD0 and HD2 are only slightly inhibited, thereby establishing a clear difference to animal histone deacetylases. The three activities are inhibited by acetate, Cu(2+) and Zn(2+) …

Histone deacetylase 5Histone deacetylase 2HDAC11HDAC10Plant ScienceGeneral MedicineBiologySAP30BiochemistryHistone methyltransferaseGeneticsHistone deacetylase activityHistone deacetylaseAgronomy and Crop SciencePlant Molecular Biology
researchProduct