Search results for "HILIC"

showing 5 items of 745 documents

Thermophilic anaerobic digestion of source separated institutional food waste and kitchen waste

2013

ruokahävikkijätteetruokafood wastekäsittelythermophilic anaerobic digestionkitchen wasteOLRVFAammonia inhibition
researchProduct

Atomic mean square displacements in proteins by Molecular Dynamics: a case for analysis of variance

2004

simulations thermophilic proteins protein dynamical transition
researchProduct

Synthesis and Structure-Affinity Relationships of Spirocyclic Benzopyrans with Exocyclic Amino Moiety

2019

σ1 and/or σ2 receptors play a crucial role in pathological conditions such as pain, neurodegenerative disorders, and cancer. A set of spirocyclic cyclohexanes with diverse O-heterocycles and amino moieties (general structure III) was prepared and pharmacologically evaluated. In structure-activity relationships studies, the σ1 receptor affinity and σ1:σ2 selectivity were correlated with the stereochemistry, the kind and substitution pattern of the O-heterocycle, and the substituents at the exocyclic amino moiety. cis-configured 2-benzopyran cis-11b bearing a methoxy group and a tertiary cyclohexylmethylamino moiety showed the highest σ1 affinity ( Ki = 1.9 nM) of this series of compounds. In…

synthesisexocyclic amino moietyReceptors Opioid mudocking studieCrystallography X-RayLigands01 natural sciencesopioid receptorschemistry.chemical_compoundProtein structureDrug DiscoveryMoiety0303 health sciencesσ1 receptor ligandsstructure (σ1) affinity relationshipmolecular dynamicBenzyl groupMolecular MedicinesynthesiBenzopyransSelectivityHydrophobic and Hydrophilic Interactionsfree binding enthalpyStereochemistrychange of receptor profileMolecular Dynamics Simulation03 medical and health sciencesStructure-Activity Relationshipσ1 receptor ligands; spirocyclic compounds; benzopyrans; benzofurans; exocyclic amino moiety; synthesis; structure (σ1) affinity relationships; σ1 antagonistic activity; receptor selectivity; molecular dynamics; docking studies; free binding enthalpy; X-ray crystal structure; opioid receptors; MOR affinity; change of receptor profile; structure MOR affinity relationshipsstructure (σ1) affinity relationshipsStructure–activity relationshipHumansReceptors sigmaBenzopyransSpiro Compoundsspirocyclic compoundBinding siteMOR affinity030304 developmental biologybenzopyranbenzofuransσ1 receptor ligandBinding Sitesspirocyclic compoundsreceptor selectivitystructure MOR affinity relationshipsdocking studiesbenzofuranopioid receptorX-ray crystal structuremolecular dynamics0104 chemical sciencesProtein Structure Tertiary010404 medicinal & biomolecular chemistrychemistrySalt bridgeσ1 antagonistic activity
researchProduct

On the mechanism of imine elimination from Fischer tungsten carbene complexes

2016

(Aminoferrocenyl)(ferrocenyl)carbene(pentacarbonyl)tungsten(0) (CO)5W=C(NHFc)Fc (W(CO)5(E-2)) is synthesized by nucleophilic substitution of the ethoxy group of (CO)5W=C(OEt)Fc (M(CO)5(1Et)) by ferrocenyl amide Fc-NH– (Fc = ferrocenyl). W(CO)5(E-2) thermally and photochemically eliminates bulky E-1,2-diferrocenylimine (E-3) via a formal 1,2-H shift from the N to the carbene C atom. Kinetic and mechanistic studies to the formation of imine E-3 are performed by NMR, IR and UV–vis spectroscopy and liquid injection field desorption ionization (LIFDI) mass spectrometry as well as by trapping experiments for low-coordinate tungsten complexes with triphenylphosphane. W(CO)5(E-2) decays thermally i…

tungstenIminemechanism010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistryReductive eliminationFull Research Paperlcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryAmideNucleophilic substitutionlcsh:Science010405 organic chemistryChemistryOrganic ChemistryferroceneOxidative addition0104 chemical sciencesChemistrycarbene complexesAlkoxy groupPseudorotationlcsh:QimineCarbeneBeilstein Journal of Organic Chemistry
researchProduct

Ortho -Functionalized Aryltetrazines by Direct Palladium-Catalyzed C−H Halogenation: Application to Fast Electrophilic Fluorination Reactions

2016

International audience; A general catalyzed direct C-H functionalization of s-tetrazines is reported. Under mild reaction conditions, N-directed ortho-C-H activation of tetrazines allows the introduction of various functional groups, thus forming carbon-heteroatom bonds: C-X (X=I, Br, Cl) and C-O. Based on this methodology, we developed electrophilic mono- and poly-ortho-fluorination of tetrazines. Microwave irradiation was optimized to afford fluorinated s-aryltetrazines, with satisfactory selectivity, within only ten minutes. This work provides an efficient and practical entry for further accessing highly substituted tetrazine derivatives (iodo, bromo, chloro, fluoro, and acetate precurso…

weak-coordinationbond fluorination412chemistry.chemical_elements-tetrazines010402 general chemistrychemistry01 natural sciences5-tetrazines[ CHIM ] Chemical SciencesCatalysisCatalysiscycloadditionsTetrazinechemistry.chemical_compoundhalogenationfluorineOrganic chemistryMolecule[CHIM]Chemical SciencesmoleculesC-H activationheterocycles010405 organic chemistryElectrophilic fluorinationHalogenationGeneral ChemistrypalladiumCombinatorial chemistry0104 chemical scienceschemistryimaging probesElectrophilecellsfluorescenceSelectivityPalladium
researchProduct