Search results for "HT"
showing 10 items of 20594 documents
Archeologia dziewiętnastowiecznej pamięci w insurekcyjnym tryptyku Jarosława Iwaszkiewicza ("Noc czerwcowa", "Zarudzie", "Heydenreich")
2013
Three short “insurrection” stories written by Jarosław Iwaszkiewicz in the years 1963–1974 have inspired various interpretations; it seems, however, that there are still many undeciphered codes, references, and allusions. The author’s metatextual comments as well as the implicit poetics of the stories make it possible to consider them as a dialogue with the historical, cultural and aesthetic heritage of the 19th century: as a form of its literary archeology. The article deals with many literary and aesthetic conventions employed in the stories, with the emphasis on the concept of sérénité and on various associations with 19th-century art. Notably, the scope of analysis includes such motifs …
Are we who we cite? : on epistemological injustices, citing practices, and #metoo in academia
2019
The #metoo movement reaching academia and Applied Linguistics creates a need for discussion on how we as scholars react to oppressive ideologies and behaviors in our community. However, this is not merely a question of processing cases of sexual harassment and assault. More deeply, we need conversations on who we do and do not know, read, and cite, and how to make our field more epistemologically equitable. This article hopes to elicit comments, reactions, and dialogue. nonPeerReviewed
"Figure 11" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron $R_{dA}$ 60-88% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.
"Figure 8" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron RdA 0-20% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.
"Figure 9" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron $R_{dA}$ 20-40% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.
"Figure 7" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron $R_{dA}$ 0-100% d+Au collisions. The nuclear modification factors $R_{dA}$ and $R_{AA}$ for minimum bias $d$+Au and Au+Au collisions, for the $\pi^{0}$ and $e^{\pm}_{HF}$. The two boxes on the right side of the plot represent the global uncertainties in the $d$+Au (left) and Au+Au (right) values of $N_{coll}$ . An additional common global scaling uncertainty of 9.7% on $R_{dA}$ and $R_{AA}$ from the $p+p$ reference data is omitted for clarity.
"Figures 3-6" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron yield, $d$+Au $\implies$ CHARGED X. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).
"Figure 10" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron $R_{dA}$ 40-60% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.
"Figures 1-2" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron yield, Run-8 $p$ + $p$, $d$+Au collisions. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).
"Table 35" of "Search for pairs of highly collimated photon-jets in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector"
2018
Fraction of photons with a value of shower shape variable $\Delta E$ lower than the threshold, for photons originating from the BSM process $X\rightarrow\gamma\gamma$, where the $X$ particle is a high-mass narrow-width scalar particle originating from the gluon--gluon fusion process.