Search results for "HYPERFINE"

showing 10 items of 428 documents

Effect of Vacancies on Positron Annihilation and Hyperfine Interactions in Fe-Al Alloys - <i>Ab Initio</i> Study

2012

Vacancies occupying different sub-lattices of D03 structure of Fe3Al alloy were investigated by the full potential linearized augmented plane wave method. The calculations basing on the super-cell approach have been performed for the vacancy concentrations of 1.6 and 3 at.%. For both concentrations the sub-lattice preference for vacancy location was determined. The dependence of vacancy formation energy on magnetic state of structure has been found. The positron lifetimes for the annihilation in the bulk (Fe3Al) and in vacancies have been investigated basing on the ab initio results for the electron density. The effect of vacancies on spin magnetic moment and hy-perfine parameters of Fe ato…

Electron densityMaterials scienceAnnihilationCondensed matter physicsAlloyAb initioengineering.materialCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSpin magnetic momentCondensed Matter::Materials SciencePositronVacancy defectPhysics::Atomic and Molecular ClustersengineeringGeneral Materials ScienceHyperfine structureSolid State Phenomena
researchProduct

Electron paramagnetic resonance line shape investigation of the Si-29 hyperfine doublet of the E'γ center in a-SiO2

2007

We report an experimental study by electron paramagnetic resonance (EPR) spectroscopy of the E′γ center and of its hyperfine structure, consisting in a pair of lines split by 42 mT. Our results show that two types of E′γ centers can be distinguished on the basis of the EPR line shapes of their main resonance line and hyperfine structure. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Electron nuclear double resonanceChemistrySettore ING-IND/20 - Misure E Strumentazione NucleariSettore FIS/01 - Fisica SperimentaleCenter (category theory)radiazione gammaCondensed Matter Physicslaw.inventionNuclear magnetic resonanceelectron paramagnetic resonancelawAtomic physicsSpectroscopyElectron paramagnetic resonanceResonance lineHyperfine structureLine (formation)
researchProduct

Au25(SEt)18 a nearly naked thiolate-protected Au25 cluster Struct. analysis by single crystal X-ray crystallograp. and electron nuclear double res

2014

X-ray crystallography has been fundamental in discovering fine structural features of ultrasmall gold clusters capped by thiolated ligands. For still unknown structures, however, new tools capable of providing relevant structural information are sought. We prepared a 25-gold atom nanocluster protected by the smallest ligand ever used, ethanethiol. This cluster displays the electrochemistry, mass spectrometry, and UV-vis absorption spectroscopy features of similar Au25 clusters protected by 18 thiolated ligands. The anionic and the neutral form of Au25(SEt)18 were fully characterized by (1)H and (13)C NMR spectroscopy, which confirmed the monolayer's properties and the paramagnetism of neutr…

Electron nuclear double resonanceGold clusterAbsorption spectroscopyChemistryGeneral EngineeringGeneral Physics and AstronomyENDORparamagnetismCrystallographyUnpaired electronX-ray crystallographyCluster (physics)General Materials ScienceSpectroscopyHyperfine structureta116gold nanoclustersX-ray crystallography
researchProduct

Investigation on the microscopic structure of E' center in amorphous silicon dioxide by electron paramagnetic resonance spectroscopy

2006

The E′δ center is one of the most important paramagnetic point defects in amorphous silicon dioxide ( a-SiO 2) primarily for applications in the field of electronics. In fact, its appearance in the gate oxide of metal-oxide-semiconductor (MOS) structures seriously affects the proper work of many devices and, often, causes their definitive failure. In spite of its relevance, until now a definitive microscopic model of this point defect has not been established. In the present work we review our experimental investigation by electron paramagnetic resonance (EPR) on the E′δ center induced in γ-ray irradiated a-SiO 2. This study has driven us to the determination of the intensity ratio between…

Electron nuclear double resonanceMaterials scienceCondensed matter physicsSiliconAmorphous silicon dioxide point defect E′ centerschemistry.chemical_elementStatistical and Nonlinear PhysicsCondensed Matter PhysicsCrystallographic defectlaw.inventionParamagnetismDelocalized electronUnpaired electronchemistrylawAtomic physicsElectron paramagnetic resonanceHyperfine structure
researchProduct

Electron paramagnetic resonance investigation on the hyperfine structure of the center in amorphous silicon dioxide

2007

Abstract We report an experimental investigation by electron paramagnetic resonance (EPR) spectroscopy on the hyperfine structure of the E δ ′ center in γ-ray irradiated amorphous silicon dioxide materials. This study has driven us to the determination of the intensity ratio between the hyperfine doublet and the main resonance line of this point defect. This ratio was obtained for a variety of silica samples and compared with the analogous ratio obtained for the E γ ′ defect. The comparison definitively confirms that the electronic wave function involved in the E δ ′ center is actually delocalized over four nearly equivalent Si atoms.

Electron nuclear double resonanceSettore ING-IND/20 - Misure E Strumentazione NucleariChemistrySettore FIS/01 - Fisica SperimentaleSilica Electron spin resonance DefectsAnalytical chemistryCondensed Matter PhysicsCrystallographic defectElectronic Optical and Magnetic Materialslaw.inventionDelocalized electronlawMaterials ChemistryCeramics and CompositesIrradiationAtomic physicsElectron paramagnetic resonanceWave functionSpectroscopyHyperfine structureJournal of Non-Crystalline Solids
researchProduct

Temperature dependence of the isotropic hyperfine coupling constants in 1,4-hydroquinone and 1,4-dihydroxynaphthalene cation radicals

1998

Electron paramagnetic resonance spectroscopyHyperfine couplingchemistry.chemical_compoundHydroquinoneChemistryComputational chemistryRadicalIsotropyPhysical chemistryGeneral Materials ScienceGeneral ChemistryMagnetic Resonance in Chemistry
researchProduct

The VN2 negatively charged defect in diamond. A quantum mechanical investigation of the EPR response

2020

Abstract The VN 2 − defect in diamond consists of a vacancy surrounded by two substitutional nitrogen atoms, which lower the local symmetry from Td to C2v. Calculations of the doublet ground state geometry, electronic structure, EPR parameters, and IR spectra of this defect are reported along with a preliminary investigation of the observed optical transition. For the most part our results were obtained using a uniform charge compensated supercell approach together with the B3LYP functional and all-electron Gaussian basis sets designed for the properties studied. In particular, the computed hyperfine and quadrupolar EPR parameters for the carbon and nitrogen atoms adjacent to the vacancy ag…

Electronic structuredefectMaterials scienceVNPhonon2002 engineering and technologyElectronic structureengineering.materialBand structure; Comparison simulation-experiment; Diamond; Electron paramagnetic resonance response; Electronic structure; IR spectrum; VN; 2; 0; defect; VN; 2; −; defect010402 general chemistry01 natural sciencesMolecular physicslaw.inventionlawSpin waveVacancy defectGeneral Materials ScienceIR spectrumElectron paramagnetic resonanceHyperfine structureDiamondBand structureGeneral ChemistryComparison simulation-experiment021001 nanoscience & nanotechnology0104 chemical sciencesengineeringDiamond0210 nano-technologyGround stateElectron paramagnetic resonance responseCarbon
researchProduct

Detection of the Lowest-Lying Odd-Parity Atomic Levels in Actinium

2020

Two lowest-energy odd-parity atomic levels of actinium, 7s27pP21/2o, 7s27pP23/2o, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) and 12 276.59(2) cm-1. The lifetimes of these states were determined as 668(11) and 255(7) ns, respectively. In addition, we observed the effect of the hyperfine structure on the line for the transition to P23/2o. These properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods, in good agreement with the experiment. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficien…

FUNDAMENTAL PHYSICSGeneral Physics and Astronomychemistry.chemical_elementHYPERFINE STRUCTURE01 natural sciences7. Clean energyATOMIC SPECTROSCOPYLASER IONIZATION SPECTROSCOPYATOMSCOMPLEX ATOMIC SPECTRALaser coolingIonization0103 physical sciences010306 general physicsSpectroscopyNUMERICAL METHODSHyperfine structurePhysicsHYBRID APPROACHATOM LASERSActinideConfiguration interactionCOUPLED-CLUSTER METHODSACTINIUMMEDICAL ISOTOPE PRODUCTIONActiniumchemistryLASER COOLINGIONIZATIONProduction (computer science)Atomic physicsCONFIGURATION INTERACTIONS
researchProduct

Chemical disorder and Pb207 hyperfine fields in the magnetoelectric multiferroic Pb(Fe1/2Sb1/2)O3 and its solid solution with Pb(Fe1/2Nb1/2)O3

2018

We report on the results of magnetic susceptibility, electron paramagnetic resonance, and $^{207}\mathrm{Pb}$ nuclear magnetic resonance (NMR) studies of the magnetoelectric multiferroic $\mathrm{Pb}(\mathrm{F}{\mathrm{e}}_{1/2}\mathrm{S}{\mathrm{b}}_{1/2}){\mathrm{O}}_{3}$ (PFS) ceramic, as well as its solid solution with $\mathrm{Pb}(\mathrm{F}{\mathrm{e}}_{1/2}\mathrm{N}{\mathrm{b}}_{1/2}){\mathrm{O}}_{3}$ (PFN) of different degrees of the 1:1 ordering of magnetic $\mathrm{F}{\mathrm{e}}^{3+}$ and nonmagnetic $\mathrm{S}{\mathrm{b}}^{5+}$ ions. The ordering has been studied by x-ray diffraction (XRD) and NMR methods. In particular, two spectral lines, originating from the ordered and dis…

Fermi contact interactionMaterials scienceSpin glassPhysics and Astronomy (miscellaneous)Lattice (group)Order (ring theory)02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic susceptibilityCrystallography0103 physical sciencesAntiferromagnetismGeneral Materials Science010306 general physics0210 nano-technologyHyperfine structureSolid solutionPhysical Review Materials
researchProduct

Precision Determination of Cyclotron Frequencies of Free Electrons and Ions

1982

Within the last two decades the electrodynamical storage of electrons and ions developed into an experimental method of great versatility. That this method is now being used in so many different fields of physics and chemistry results primarily from the long storage times which nowadays can be achieved. Under ultrahigh vacuum conditions and in sufficiently strong electromagnetic fields the particles can easily be trapped for hours or even days. This really long storage time offers the possibility of studying reactions of very slow rate to the chemist and of precision measurement of photon-ion interactions to the physicist. The accuracy of photon-ion interaction measurement is finally limite…

Free electron modellawChemistryCyclotronElementary particleElectronAtomic physicsHyperfine structureFourier transform ion cyclotron resonanceIon cyclotron resonanceIonlaw.invention
researchProduct