Search results for "HYPOTHALAMUS"

showing 10 items of 164 documents

The LIM Homeodomain Factor Lhx2 Is Required for Hypothalamic Tanycyte Specification and Differentiation

2014

Hypothalamic tanycytes, a radial glial-like ependymal cell population that expresses numerous genes selectively enriched in embryonic hypothalamic progenitors and adult neural stem cells, have recently been observed to serve as a source of adult-born neurons in the mammalian brain. The genetic mechanisms that regulate the specification and maintenance of tanycyte identity are unknown, but are critical for understanding how these cells can act as adult neural progenitor cells. We observe that LIM (Lin-11, Isl-1, Mec-3)-homeodomain geneLhx2is selectively expressed in hypothalamic progenitor cells and tanycytes. To test the function ofLhx2in tanycyte development, we used an intersectional gene…

MaleCell typeEpendymal CellCellular differentiationNeurogenesisEpendymoglial CellsLIM-Homeodomain Proteinsradial gliaHypothalamusMice TransgenicBiologytanycytesMicemedicineAnimalshypothalamustranscription factorGeneticsTanycyteGeneral NeuroscienceNeurogenesisependymal cellsCell DifferentiationArticlesNeural stem cellCell biologyNeuroepithelial cellmedicine.anatomical_structureembryonic structuresEctopic expressionFemalemetabolismTranscription Factors
researchProduct

Anterograde tracing of retinal afferents to the tree shrew hypothalamus and raphe

2000

The anterograde neuronal transport of Cholera toxin B subunit (CTB) was used in this study to label the termination of retinal afferents in the hypothalamus of the tree shrew Tupaia belangeri. Upon pressure-injection of the substance into the vitreous body of one eye, a major projection of the retinohypothalamic tract (RHT) was found to the hypothalamic suprachiasmatic nuclei (SCN). Although the innervation pattern was bilateral, the ipsilateral SCN received a somewhat stronger projection. Labeling was also found in the supraoptic nucleus and its perinuclear zone, respectively, mainly ipsilaterally as well as in the bilateral para- and periventricular hypothalamic regions without lateral pr…

MaleCholera ToxinHypothalamusBiologySynaptic TransmissionRetinaSupraoptic nucleusAnimalsNeurons AfferentMolecular BiologyNeuronal transportRapheSuprachiasmatic nucleusGeneral NeuroscienceTupaiidaeGeniculate BodiesAnatomyAnterograde tracingHypothalamusRaphe NucleiFemaleSuprachiasmatic NucleusNeurology (clinical)Raphe nucleiSupraoptic NucleusNeuroscienceRetinohypothalamic tractDevelopmental BiologyBrain Research
researchProduct

Importance of mitochondrial dynamin-related protein 1 in hypothalamic glucose sensitivity in rats.

2012

International audience; AIMS: Hypothalamic mitochondrial reactive oxygen species (mROS)-mediated signaling has been recently shown to be involved in the regulation of energy homeostasis. However, the upstream signals that control this mechanism have not yet been determined. Here, we hypothesize that glucose-induced mitochondrial fission plays a significant role in mROS-dependent hypothalamic glucose sensing. RESULTS: Glucose-triggered translocation of the fission protein dynamin-related protein 1 (DRP1) to mitochondria was first investigated in vivo in hypothalamus. Thus, we show that intracarotid glucose injection induces the recruitment of DRP1 to VMH mitochondria in vivo. Then, expressio…

MaleEnergy-Generating Resourcesnervous-systemPhysiology[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionClinical BiochemistryneuronsMitochondrionBiochemistryinvolvementEnergy homeostasisDNM1L0302 clinical medicineInsulin-Secreting CellsInsulin SecretionInsulinGeneral Environmental Science2. Zero hungerchemistry.chemical_classification0303 health sciencesTransport proteinMitochondriaProtein TransportHypothalamusGene Knockdown TechniquesMitochondrial MembranesMitochondrial fissionRNA InterferenceDynaminsmedicine.medical_specialtyendocrine systembrainmechanismCarbohydrate metabolismBiology03 medical and health sciencesOxygen ConsumptionInternal medicineexpressionmedicineAnimalsRats WistarMolecular Biologyenergy homeostasis030304 developmental biologyReactive oxygen speciesAppetite RegulationArcuate Nucleus of HypothalamusCell Biologyislet blood-flowRatsEndocrinologyGlucosechemistryVentromedial Hypothalamic NucleusGeneral Earth and Planetary SciencesactivationReactive Oxygen Species[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryinsulin-secretion
researchProduct

Transcriptional profiling of rat hypothalamus response to 2,3,7,8-tetrachlorodibenzo-ρ-dioxin

2015

In some mammals, halogenated aromatic hydrocarbon (HAH) exposure causes wasting syndrome, defined as significant weight loss associated with lethal outcomes. The most potent HAH in causing wasting is 2,3,7,8-tetrachlorodibenzo-r-dioxin (TCDD), which exerts its toxic effects through the aryl hydrocarbon receptor (AHR). Since TCDD toxicity is thought to predominantly arise from dysregulation of AHR-transcribed genes, it was hypothesized that wasting syndrome is a result of to TCDD-induced dysregulation of genes involved in regulation of food-intake. As the hypothalamus is the central nervous systems' regulatory center for food-intake and energy balance. Therefore, mRNA abundances in hypothala…

MaleFOOD-INTAKETCDDPolychlorinated DibenzodioxinsTime FactorsTranscription GeneticMicroarrayTISSUE GROWTH-FACTORAHRAH GENE BATTERY413 Veterinary scienceToxicologyToxicogeneticsfeed restrictionTranscriptomeNAD(P)H Dehydrogenase (Quinone)RESISTANT RATheterocyclic compoundsMESSENGER-RNA EXPRESSIONhypothalamusWastingreproductive and urinary physiologyOligonucleotide Array Sequence Analysisbiologyta31413. Good healthPROBE LEVELHypothalamusToxicityENERGY-BALANCEmedicine.symptommicroarrayARYL-HYDROCARBON RECEPTORendocrine systemmedicine.medical_specialtyta3111Species SpecificityInternal medicineCytochrome P-450 CYP1A1medicineAnimalsRats Long-EvansRNA MessengerWasting SyndromeRats WistarWasting SyndromeGene Expression Profilingta1184Lethal doseAryl hydrocarbon receptorstomatognathic diseasesEndocrinologyINDUCED ANOREXIAGene Expression Regulationbiology.proteinToxicology
researchProduct

Efferent connections of the "olfactostriatum": a specialized vomeronasal structure within the basal ganglia of snakes.

2005

Abstract The olfactostriatum is a portion of the basal ganglia of snakes that receives substantial vomeronasal afferents through projections from the nucleus sphericus. In a preceding article, the olfactostriatum of garter snakes (Thamnophis sirtalis) was characterized on the basis of chemoarchitecture (distribution of serotonin, neuropeptide Y and tyrosine hydroxylase) and pattern of afferent connections [Martinez-Marcos, A., Ubeda-Banon, I., Lanuza, E., Halpern, M., 2005. Chemoarchitecture and afferent connections of the “olfactostriatum”: a specialized vomeronasal structure within the basal ganglia of snakes. J. Chem. Neuroanat. 29, 49–69]. In the present study, its efferent connections …

MaleHypoglossal nucleusHypothalamus PosteriorBiotinBiologyNucleus accumbensAmygdalaEfferent PathwaysBasal GangliaNucleus AccumbensVentral pallidumCellular and Molecular NeuroscienceBasal gangliamedicineAnimalsRhodaminesColubridaeDextransAnatomyOlfactory PathwaysAmygdalaVentral tegmental areaSmellStria terminalismedicine.anatomical_structureFemaleFluoresceinVomeronasal OrganRaphe nucleiNeuroscienceJournal of chemical neuroanatomy
researchProduct

Hypothalamic Astroglial Connexins are Required for Brain Glucose Sensing-Induced Insulin Secretion

2014

Supplementary Information accompanies the paper on the Journal of Cerebral Blood Flow & Metabolism website; Hypothalamic glucose detection participates in maintaining glycemic balance, food intake, and thermogenesis. Although hypothalamic neurons are the executive cells involved in these responses, there is increasing evidence that astrocytes participate in glucose sensing (GS); however, it is unknown whether astroglial networking is required for glucose sensitivity. Astroglial connexins 30 and 43 (Cx30 and Cx43) form hexameric channels, which are apposed in gap junctions, allowing for the intercellular transfer of small molecules such as glucose throughout the astroglial networks. Here, we…

MaleINVOLVEMENTHOMEOSTASISmedicine.medical_specialtymedicine.medical_treatmentNerve Tissue ProteinsCarbohydrate metabolismBiologyASTROCYTESConnexinsconnexin 43RATSastrocyteInternal medicineInsulin SecretionmedicineAnimalsInsulinTANYCYTESRats WistarhypothalamusIN-VIVOHEMICHANNELSglucose sensingInsulinARCUATE NUCLEUSGap junctionFasting[ SDV.MHEP.EM ] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolismBARRIERconnexin 30NETWORKSGlucoseEndocrinologymedicine.anatomical_structureNeurologyHypothalamus[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]RNA InterferenceOriginal Article[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]sense organsNeurology (clinical)Cardiology and Cardiovascular MedicineThermogenesisIntracellularHomeostasisAstrocyteJournal of Cerebral Blood Flow & Metabolism
researchProduct

Food Intake Adaptation to Dietary Fat Involves PSA-Dependent Rewiring of the Arcuate Melanocortin System in Mice

2012

International audience; Hormones such as leptin and ghrelin can rapidly rewire hypothalamic feeding circuits when injected into rodent brains. These experimental manipulations suggest that the hypothalamus might reorganize continually in adulthood to integrate the metabolic status of the whole body. In this study, we examined whether hypothalamic plasticity occurs in naive animals according to their nutritional conditions. For this purpose, we fed mice with a short-term high-fat diet (HFD) and assessed brain remodeling through its molecular and functional signature. We found that HFD for 3 d rewired the hypothalamic arcuate nucleus, increasing the anorexigenic tone due to activated pro-opio…

MaleMESH: Signal TransductionPro-Opiomelanocortin[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionSYNAPTIC INPUT ORGANIZATIONMESH: Energy IntakeWeight GainMESH: Mice KnockoutMice0302 clinical medicineMESH : Sialic AcidsNPY/AGRP NEURONSMESH: Pro-OpiomelanocortinMESH: AnimalsMESH : Neuronal PlasticityMESH: Neuronal PlasticityPLASTICITYMESH : Pro-OpiomelanocortinMESH : Adaptation PhysiologicalMice KnockoutFEEDING CIRCUITSMESH : Organ Culture TechniquesINSULIN-RESISTANCE0303 health sciencesNeuronal PlasticityPOLYSIALIC ACIDGeneral NeuroscienceLeptinMESH: Energy Metabolismdigestive oral and skin physiologyINDUCED OBESITYMESH : SialyltransferasesMESH : Weight GainArticlesAdaptation PhysiologicalMESH : Mice TransgenicBODY-WEIGHTMESH: Dietary FatsHypothalamusCELL-ADHESION MOLECULEMESH: Weight GainGhrelinENERGY-BALANCEMelanocortinhormones hormone substitutes and hormone antagonistsSignal Transductionmedicine.medical_specialtyMESH: Mice TransgenicMESH : MaleMESH: SialyltransferasesMESH: Arcuate NucleusMice TransgenicMESH : Mice Inbred C57BLBiologyMESH : Arcuate NucleusMESH: Sialic Acids03 medical and health sciencesOrgan Culture TechniquesInsulin resistanceMESH: Mice Inbred C57BLArcuate nucleusInternal medicineMESH : MicemedicineAnimalsMESH: Mice030304 developmental biologyMESH : Signal TransductionArcuate Nucleus of HypothalamusMESH : Energy Intakemedicine.diseaseDietary FatsMESH: Adaptation PhysiologicalSialyltransferasesMESH: Organ Culture TechniquesMESH: MaleMice Inbred C57BLMESH : Energy MetabolismEndocrinologyMESH: Nerve NetSialic AcidsMESH : Nerve NetMESH : Mice KnockoutMESH : AnimalsNerve NetEnergy IntakeEnergy Metabolism[SDV.AEN]Life Sciences [q-bio]/Food and NutritionMESH : Dietary Fats030217 neurology & neurosurgeryHomeostasisHormoneThe Journal of Neuroscience
researchProduct

Alteration of hypothalamic glucose and lactate sensing in 48h hyperglycemic rats.

2013

International audience; Hypothalamic detection of nutrients is involved in the control of energy metabolism and is altered in metabolic disorders. Although hypothalamic detection of blood lactate lowers hepatic glucose production and food intake, it is unknown whether it also modulates insulin secretion. To address this, a lactate injection via the right carotid artery (cephalad) was performed in Wistar rats. This triggered a transient increase in insulin secretion. Rats made hyperglycemic for 48h exhibited prolonged insulin secretion in response to a glucose injection via the carotid artery, but lactate injection induced two types of responses: half of the HG rats showed no difference comp…

MaleMonocarboxylic Acid TransportersGene isoformmedicine.medical_specialtyTime Factors[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionHypothalamusMuscle ProteinsBiologyCarbohydrate metabolismInternal medicineInsulin SecretionBlood lactatemedicineExtracellularAnimalsInsulinLactic AcidRats WistarInsulin secretionSymportersGeneral NeuroscienceGlucose InjectionTransporterRatsGlucoseEndocrinologyHypothalamusHyperglycemia[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

Brain processing of the mammary pheromone in newborn rabbits.

2011

International audience; Chemosignals strongly contribute to social interactions in mammals, including mother-young relationships. In the European rabbit, a volatile compound emitted by lactating females in milk, the 2-methylbut-2-enal, has been isolated. Carrying the properties of a pheromone, in particular the spontaneous ability to release critical sucking-related movements in newborns, it has been called the mammary pheromone (MP). Lesion of the vomeronasal organ and preliminary 2-deoxyglucose data suggested that the MP could be processed by the main olfactory system. However, the neuronal substrate that sustains the MP-induced response of neonates remained unknown. Here, we evaluated Fo…

MaleOlfactory systemVomeronasal organ[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionMESH: NeuronsMESH: RabbitsPheromonesMESH : PheromonesMESH: Animals NewbornThirstMESH: Vomeronasal OrganBehavioral Neuroscience0302 clinical medicinePiriform cortexMESH : HabenulaMESH : FemaleMESH: AnimalsMESH : Olfactory BulbNeurons0303 health sciencesMESH: PheromonesLamina terminalisMESH: Proto-Oncogene Proteins c-fosMESH : Animals NewbornOlfactory PathwaysOlfactory BulbHabenulamedicine.anatomical_structureMESH: HabenulaPheromoneFemaleRabbitsVomeronasal Organmedicine.symptomProto-Oncogene Proteins c-fosMESH: Olfactory Bulbmedicine.medical_specialtyMESH : HypothalamusMESH : Vomeronasal OrganMESH : MaleHypothalamusBiologyMESH : Neurons03 medical and health sciencesInternal medicinemedicineAnimalsMESH : Rabbits030304 developmental biologyHabenulaMESH : Olfactory PathwaysNewbornMESH: HypothalamusMESH: MaleOlfactory bulbEndocrinologyMESH : Proto-Oncogene Proteins c-fosAnimals NewbornMESH : AnimalsMESH: Female[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryMESH: Olfactory Pathways
researchProduct

Photoperiod effects on bombesin- and cholecystokinin-like immunoreactivity in the suprachiasmatic nuclei of the Djungarian hamster (Phodopus sungorus)

1991

The immunocytochemical distribution of the putative satiety peptides bombesin (BBS) and cholecystokinin (CCK) were studied in the hypothalamic suprachiasmatic nuclei (SCN) of male and female Djungarian hamsters (Phodopus sungorus) held under either long (light/dark, LD 16:8 h) or short (LD 8:16) photoperiod. The animals were killed by perfusion with a fixative at the middle of the light period and the tissue was processed by routine immunohistochemical methods. Perikarya exhibiting BBS- or CCK-like immunoreactivity (LI) were found in the SCN of animals of all groups. Sex-related differences were not observed. In contrast, long-term exposure to short days decreased the number of neurons exhi…

MalePeriodicityendocrine systemmedicine.medical_specialtyTime FactorsLightNeuropeptideHamsterBiologychemistry.chemical_compoundCricetinaeInternal medicinemedicineAnimalsTissue DistributionCholecystokininSuprachiasmatic nucleusGeneral Neurosciencedigestive oral and skin physiologyBombesinbiology.organism_classificationImmunohistochemistryPhodopusEndocrinologymedicine.anatomical_structurechemistryHypothalamusBombesinFemaleSuprachiasmatic NucleusCholecystokininPeriventricular nucleushormones hormone substitutes and hormone antagonistsNeuroscience Letters
researchProduct