Search results for "Heavy element"

showing 10 items of 67 documents

STUDIES OF SUPERHEAVY ELEMENTS AT SHIP

2007

An overview of present experimental investigation of superheavy elements is given. The data are compared with theoretical descriptions. Results are reported from an experiment to confirm production of element 112 isotopes in irradiation of 238 UF 4 with 48 Ca . One spontaneous fission event was measured, which agrees with three events of previously measured data which had been assigned to the decay of 283112. However, more experimental work is needed in order to obtain an independent and unambiguous confirmation of previous results.

PhysicsNuclear physicsNuclear and High Energy PhysicsIsotopeGeneral Physics and AstronomyExperimental workSuperheavy ElementsSpontaneous fissionEvent (probability theory)International Journal of Modern Physics E
researchProduct

From Nuclear Fission to Superheavy Elements

1998

(1998). From Nuclear Fission to Superheavy Elements. Nuclear Physics News: Vol. 8, No. 2, pp. 7-21.

PhysicsNuclear physicsNuclear and High Energy PhysicsNuclear fissionSuperheavy ElementsNuclear Physics News
researchProduct

In-beam spectroscopy of heavy elements

2015

Abstract Traditionally the experimental study of heavy and superheavy elements has belonged to the realm of decay spectroscopy and nuclear reactions. Only in the past twenty years or so has it become feasible to study nuclei with Z = 96 and beyond with in-beam spectroscopic techniques. Since the pioneering studies in the late 1990s, development of both instrumentation and experimental techniques has resulted in a significant lowering of the spectroscopic limit for in-beam measurements. Such measurements give access to a wide range of nuclear structure observables which in general are beyond the reach of other techniques. The current review aims to present the most recent developments and re…

PhysicsNuclear physicsNuclear reactionNuclear and High Energy PhysicsNuclear structureSuperheavy ElementsSpectroscopyBeam (structure)Nuclear Physics A
researchProduct

Super Heavy Elements - experimental developments

2018

With his theoretical work Walter Greiner, our mentor, pioneered super heavy element research and motivated us young scientists. He actively shaped the profile of GSI. We are happy that still during his lifetime we could prove some of his predictions: Fusion with magic nuclei paving the way to super heavy elements and the proof of the prediction of the nuclear species existing only by shell stabilization, super heavy elements. With the discovery of oganesson, Z=118, the heaviest element known today, we have come to the end of this era. New experimental developments will be discussed.

PhysicsTheoretical physics010308 nuclear & particles physicsPhysicsQC1-9990103 physical sciencesTransactinide elementHeavy element010306 general physics01 natural sciencesEPJ Web of Conferences
researchProduct

Alpha-Photon Coincidence Spectroscopy Along Element 115 Decay Chains

2014

Produced in the reaction 48Ca+243Am, thirty correlated α-decay chains were observed in an experiment conducted at the GSI Helmholzzentrum fur Schwerionenforschung, Darmstadt, Germany. The decay chains are basically consistent with previous findings and are considered to originate from isotopes of element 115 with mass numbers 287, 288, and 289. A set-up aiming specifically for high-resolution charged particle and photon coincidence spectroscopy was placed behind the gas-filled separator TASCA. For the first time, γ rays as well as X-ray candidates were observed in prompt coincidence with the α-decay chains of element 115.

Physicselement 115PhotonIsotopealpha decayGeneral Physics and Astronomy7. Clean energyNuclear & Particles PhysicsCoincidenceCharged particleMathematical SciencesNuclear physicssuperheavy elementsgamma-ray spectroscopySubatomic PhysicsPhysical SciencesGamma spectroscopyddc:530Alpha decayDecay chainAtomic physicsSpectroscopy
researchProduct

Search for elements 119 and 120

2020

A search for production of the superheavy elements with atomic numbers 119 and 120 was performed in the 50Ti+249Bk and 50Ti+249Cf fusion-evaporation reactions, respectively, at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. Over four months of irradiation, the 249Bk target partially decayed into 249Cf, which allowed for a simultaneous search for both elements. Neither was detected at cross-section sensitivity levels of 65 and 200 fb for the 50Ti+249Bk and 50Ti+249Cf reactions, respectively, at a midtarget beam energy of Elab=281.5 MeV. The nonobservation of elements 119 and 120 is discussed within the concept of fusion-evaporation reactions including various theoretical pr…

Physicselement 119010308 nuclear & particles physicselement 120Superheavy Elements01 natural sciencesIsland of stabilityRecoil separatorNuclear physicssuperheavy elementsProduction cross sectionSubatomic Physics0103 physical sciences540 Chemistry570 Life sciences; biologylow and intermediate energy heavy-ion reactionsAtomic numberIrradiationSensitivity (control systems)ydinfysiikka010306 general physicsBeam energyPhysical Review C
researchProduct

Superheavy element flerovium (element 114) is a volatile metal.

2014

The electron shell structure of superheavy elements, i.e., elements with atomic number Z ≥ 104, is influenced by strong relativistic effects caused by the high Z. Early atomic calculations on element 112 (copernicium, Cn) and element 114 (flerovium, Fl) having closed and quasi-closed electron shell configurations of 6d(10)7s(2) and 6d(10)7s(2)7p1/2(2), respectively, predicted them to be noble-gas-like due to very strong relativistic effects on the 7s and 7p1/2 valence orbitals. Recent fully relativistic calculations studying Cn and Fl in different environments suggest them to be less reactive compared to their lighter homologues in the groups, but still exhibiting a metallic character. Expe…

Physicsgas chemistryValence (chemistry)ta114Electron shellchemistry.chemical_elementelement 114Inorganic ChemistryFleroviumsuperheavy elementsPhysisorptionchemistryAtomic orbitalChemical physicsSubatomic PhysicsAtomic numberPhysical and Theoretical ChemistryAtomic physicsRelativistic quantum chemistryCoperniciumInorganic chemistry
researchProduct

Investigation of the reaction 64Ni+238U being an option of synthesizing element 120

2010

This study is concerned with the search for entrance channels suitable to synthesize elements with Z > 118. Mass-energy distributions as well as capture cross-sections of fission-like fragments have been measured for the reactions 64Ni + 238U → 302120 and 48Ca + 238U → 286112 at energies near the Coulomb barrier. Compound nucleus fission cross-sections were estimated from the analysis of mass and total kinetic energy distributions. The cross-section drops three orders of magnitude for the formation of the compound nucleus with Z = 120 obtained in the reaction 64Ni + 238U compared to the formation of the compound nucleus with Z = 112 obtained in the reaction 48Ca + 238U at an excitation ener…

Physicssuperheavy elements ; fusion ; fission ; entrance channelsNuclear and High Energy PhysicsQuasi-fissionFissionSuperheavy elementsFusion–fissionCoulomb barrierKinetic energyPhysique atomique et nucléairemedicine.anatomical_structureSuperheavy elementOrders of magnitude (time)medicineAtomic physicsNucleusFusion-fissionExcitationPhysics Letters B
researchProduct

Exploring the stability of super heavy elements: First Measurement of the Fission Barrier of $^{254} $No

2013

The gamma-ray multiplicity and total energy emitted by the heavy nucleus 254No have been measured at 2 different beam energies. From these measurements, the initial distributions of spin I and excitation energy E * of 254No were constructed. The distributions display a saturation in excitation energy, which allows a direct determination of the fission barrier. 254No is the heaviest shell-stabilized nucleus with a measured fission barrier. © Owned by the authors, published by EDP Sciences, 2014.

Physicsta114Fissionheavy elementsPhysicsQC1-999Nuclear Theoryfission barrierTransactinide elementstability[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energyNuclear physicsmedicine.anatomical_structuremedicineNuclear structureMultiplicity (chemistry)Total energyAtomic physicsNuclear ExperimentSaturation (magnetic)NucleusExcitationComputingMilieux_MISCELLANEOUS
researchProduct

Fission in the landscape of heaviest elements: Some recent examples

2016

The fission process still remains a main factor that determines the stability of the atomic nucleus of heaviest elements. Fission half-lives vary over a wide range, 10^−19 to 10^24 s. Present experimental techniques for the synthesis of the superheavy elements that usually measure α-decay chains are sensitive only in a limited range of half-lives, often 10^5 to 10^3 s. In the past years, measurement techniques for very short-lived and very long-lived nuclei were significantly improved at the gas-filled recoil separator TASCA at GSI Darmstadt. Recently, several experimental studies of fission-related phenomena have successfully been performed. In this paper, results on 254−256Rf and 266Lr ar…

Range (particle radiation)ta114010308 nuclear & particles physicsChemistryFissionPhysicsQC1-999nuclear stability[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Superheavy Elements7. Clean energy01 natural sciencesRecoil separatorNuclear physicssuperheavy elements0103 physical sciencesAtomic nucleusfissionddc:530010306 general physicsEPJ Web of Conferences
researchProduct