Search results for "Heavy-ion"

showing 10 items of 119 documents

Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector

2019

This Letter describes the observation of the light-by-light scattering process, γγ→γγ, in Pb+Pb collisions at √sNN=5.02  TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73  nb−1, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy EγT>3  GeV and pseudorapidity |ηγ|<2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12±3 events. The observed excess of events…

Photonheavy ion: scatteringmass spectrum: (2photon)Physics::Instrumentation and Detectorsmeasured [channel cross section]General Physics and Astronomytransverse energy [photon]nucl-ex01 natural sciencesLight scatteringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Scattering processPseudorapidities[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Invariant massCollisionsNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentelastic scattering [photon photon]Physicsphoton: transverse energyproton–proton collisionsLarge Hadron ColliderSettore FIS/01 - Fisica SperimentaleATLAS:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollPseudorapidityTransverse momentalight-by-light scatteringLHCchannel cross section: measuredParticle Physics - Experimentrelativistic heavy-ion collisionsjets(2photon) [mass spectrum]Transverse energyCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesATLAS experimentddc:500.2LHC ATLAS High Energy Physicstransverse momentumplanarity[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Relativistic heavy ions530AcoplanarityNuclear physicsscattering [heavy ion]Delbrück scattering0103 physical sciencesStandard deviationNuclear Physics - Experimentddc:5305020 GeV-cms/nucleonSelection criteria010306 general physicsperipheralCiencias Exactastwo-photon [mass spectrum]Integrated luminosityleadScience & Technologyhep-exrapidity [photon]Scatteringbackground:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Físicaphoton: rapidityElementary Particles and FieldsHigh Energy Physics::Experimentphoton photon: elastic scatteringmass spectrum: two-photonexperimental results
researchProduct

Examination of the influence of transfer channels on the barrier height distribution: Scattering of 20Ne on 58Ni, 60Ni, and 61Ni at near-barrier ener…

2016

Background: It was suggested that the shape of the barrier height distribution can be determined not only by strong reaction channels (collective excitations) but also by weak channels such as transfers and/or noncollective excitations. Purpose: The study of the barrier height distributions for the 20Ne + 58,60,61Ni systems requires information on transfer cross sections at near-barrier energies. Methods: A measurement of the cross sections for various transfer channels at a backward angle (142 degrees), at a near-barrier energy was performed. Identification of products was based on time-of-flight and E-E methods. A measurement of the angular distribution of α stripping in the 20Ne + 61Ni s…

heavy-ion fusionnuclear scatteringparticle transferneonnikkeli
researchProduct

D-Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions at √sNN = 5.02 TeV

2018

The azimuthal anisotropy coefficient v 2 of prompt D 0 , D + , D * + , and D + s mesons was measured in midcentral (30%–50% centrality class) Pb-Pb collisions at a center-of-mass energy per nucleon pair √ s N N = 5.02     TeV , with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays at midrapidity, | y | < 0.8 , in the transverse momentum interval 1 < p T < 24     GeV / c . The measured D -meson v 2 has similar values as that of charged pions. The D + s v 2 , measured for the first time, is found to be compatible with that of nonstrange D mesons. The measurements are compared with theoretical calculations of charm-quark transport in a hydrodynamically e…

D mesonsHigh Energy Physics::PhenomenologyNuclear TheoryHigh Energy Physics::Experimentheavy-ion collisionsanisotropyPhysics and Astronomy(all)hiukkasfysiikkaNuclear Experiment
researchProduct

Use of a running coupling in the NLO calculation of forward hadron production

2018

We address and solve a puzzle raised by a recent calculation [1] of the cross-section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an un- reasonably large dependence upon the choice of a prescription for the QCD running coupling, which spoils the predictive power of the calculation. Specifically, the results obtained with a prescription formulated in the transverse coordinate space differ by one to two orders of magnitude from those obtained with a prescription in momentum space. We show that this discrepancy is an artefact of the interplay between the asymptotic freedom of QCD and the Fourier transform from coordinate space to mo…

Position and momentum spaceQCD EVOLUTION01 natural sciencesAsymptotic freedomquantum chromodynamics: correctionhard scatteringHigh Energy Physics - Phenomenology (hep-ph)coupling constant: energy dependencestrong interaction: coupling constantEQUATIONkvanttifysiikkaComputingMilieux_MISCELLANEOUSPhysicsQuantum chromodynamicsQUARKhigher-order: 1nuclear physicssddc:12.39.StHigh Energy Physics - Phenomenology12.38.Bxsymbolsydinfysiikkahadron: forward productionFOS: Physical sciences114 Physical sciencesRENORMALIZATION-GROUP12.38.Cysymbols.namesakeCross section (physics)Theoretical physicsquantum chromodynamics0103 physical sciencessirontarelativistic heavy-ion collisionCoordinate spacenumerical calculations010306 general physicsp nucleus: scatteringcorrection: higher-orderCouplingta114010308 nuclear & particles physics25.75.-qCOLOR GLASS CONDENSATENONLINEAR GLUON EVOLUTIONRenormalization groupFourier transformasymptotic freedom[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physical Review D
researchProduct

Production of refractory elements close to the Z=N line using the ion-guide technique

1998

Production of neutron-deficient isotopes of refractory elements in the A = 80-88 region was studied using the IGISOL technique and the 165 MeV Si-32 + Ni-nat reaction. Radioactive isotopes of Y through Mo could be produced up to the M-T = + 1 line. New information on the decay of the A = 82 and 85 nuclei, including a more detailed decay scheme and more accurate half-life for Y-82, was obtained. (C) 1998 Elsevier Science B.V. All rights reserved.

Nuclear and High Energy PhysicsIsotopes of germaniumAnalytical chemistryONLINE[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesY-81Isotopes of oxygenNuclear physicsIsotopes of protactinium0103 physical sciencesNEUTRON-DEFICIENT ISOTOPES010306 general physicsInstrumentationIsotopes of europiumPhysicsDecay schemeIsotope010308 nuclear & particles physicsRefractory metalsIGISOL TECHNIQUEheavy-ion fusion-evaporation reactionsBeta decayrefractory elementsbeta decayDECAY
researchProduct

Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC

2014

In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correl…

kinetic freezout heavy-ion experiments particle cummulantsMULTIPLICITY DEPENDENCEfreeze-out radius; three-pion cumulants; pp; p–Pb and Pb–Pb collisionsPb-Pb and p-Pb collisions at the LHCpp01 natural sciencesHigh Energy Physics - Experimentlaw.inventionColor-glass condensateHigh Energy Physics - Experiment (hep-ex)ALICElawheavy-ion experiments[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PbPbNuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]kinetic freezoutNuclear ExperimentNuclear ExperimentBosonPhysicsLarge Hadron ColliderPhysicsfreeze-out radiusHEAVY-ION GENERATORlcsh:QC1-999:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]Three-pion cumulant correlations3. Good healthPRIRODNE ZNANOSTI. Fizika.BOSE-EINSTEIN CORRELATIONSParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physics[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]QC1-999particle cummulantsVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciencesALICE; pp; pPb; PbPb; Bose-Einstein; correlation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Kinetic energyp-pNuclear physicsBOSE-EINSTEIN CORRELATIONS; RANGE ANGULAR-CORRELATIONS; HEAVY-ION GENERATOR; MULTIPLICITY DEPENDENCEPion0103 physical sciencesNuclear Physics - Experimentddc:530Multiplicity (chemistry)010306 general physicsta114p–Pb and Pb–Pb collisionsVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]ALICE experimentBose–Einstein correlationsBose-EinsteinNATURAL SCIENCES. Physics.correlationpPbthree-pion cumulantslcsh:PhysicsBose–Einstein condensateRANGE ANGULAR-CORRELATIONSPhysics Letters B
researchProduct

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC

2018

We report the measured transverse momentum ($p_{\rm T}$) spectra of primary charged particles from pp, p-Pb and Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV in the kinematic range of $0.15<p_{\rm T}<50$ GeV/$c$ and $|\eta|< 0.8$. A significant improvement of systematic uncertainties motivated the reanalysis of data in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, as well as in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, which is also presented. Spectra from Pb-Pb collisions are presented in nine centrality intervals and are compared to a reference spectrum from pp collisions scaled by the number of binary nucleon-nucleon collisions. For cent…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]heavy ion: scatteringHadronmomentum [up]binaryMULTIPLICITY DEPENDENCEPartonheavy ion: scattering ; transverse momentum: momentum spectrum ; quantum chromodynamics: matter ; parton: energy loss ; momentum: high ; up: momentum ; pp: scattering ; nucleus ; charged particle ; suppression ; energy dependence ; impact parameter ; transport theory ; nucleon nucleon ; CERN LHC Coll ; kinematics ; binarymomentum spectrum [transverse momentum]hiukkasfysiikkaKAONnucl-ex01 natural sciences7. Clean energy2760 GeV-cms/nucleonHigh Energy Physics - Experimenttransverse momentum: momentum spectrumHeavy Ion Experiments; Heavy-ion collision; Nuclear and high energy physicsHigh Energy Physics - Experiment (hep-ex)quark gluon plasma Heavy Ion Experiments Heavy-ion collisionnucleon nucleonHeavy-ion collisionhigh [momentum]PIONscattering [p p]transport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)impact parameterNuclear ExperimentNuclear ExperimentQCD matterparticle production and suppressionPhysicsPhysicsHADRONSheavy ion experiments heavy ion collision particle production and suppressionHeavy Ion Experiments; Heavy-ion collisionVDP::Kjerne- og elementærpartikkelfysikk: 431suppressionCENTRALITY DEPENDENCEcharged particleCharged particleMULTIPLICITY DEPENDENCE; CENTRALITY DEPENDENCE; HADRONS; SUPPRESSION; MODEL; KAON; PIONquark gluon plasma:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431kinematicsHeavy Ion ExperimentImpact parameterParticle Physics - ExperimentHeavy Ion Experiments Heavy-ion collision Nuclear and High Energy Physics.Nuclear and High Energy Physicsp p: scatteringnucleon nucleon: scatteringenergy loss [parton]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesenergy dependenceNuclear physicsPionHeavy Ion Experiments[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [heavy ion]0103 physical sciencesmatter [quantum chromodynamics]lcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Nuclear Physics - Experiment5020 GeV-cms/nucleonup: momentum010306 general physicsp nucleus: scatteringquantum chromodynamics: matterta114010308 nuclear & particles physicshep-exnucleus:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Nuclear and high energy physicsheavy ion collisionMODEL* Automatic Keywords *13. Climate actionmomentum: highQuark–gluon plasmalcsh:QC770-798High Energy Physics::Experimentparton: energy lossEnergy (signal processing)experimental results
researchProduct

Highly occupied gauge theories in 2 + 1 dimensions : a self-similar attractor

2019

Motivated by the boost-invariant Glasma state in the initial stages in heavy-ion collisions, we perform classical-statistical simulations of SU(2) gauge theory in 2+1 dimensional space-time both with and without a scalar field in the adjoint representation. We show that irrespective of the details of the initial condition, the far-from-equilibrium evolution of these highly occupied systems approaches a unique universal attractor at high momenta that is the same for the gauge and scalar sectors. We extract the scaling exponents and the form of the distribution function close to this non-thermal fixed point. We find that the dynamics are governed by an energy cascade to higher momenta with sc…

quark-gluon plasmaScalar (mathematics)Adjoint representationhep-latFOS: Physical scienceshiukkasfysiikka114 Physical sciences01 natural sciencesComputer Science::Digital Librariessymbols.namesakeHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Correlation functionfysikk0103 physical sciencesAttractorquantum chromodynamicsGauge theory010306 general physicsUNIVERSAL DYNAMICSParticle Physics - PhenomenologyMathematical physicsDebyePhysics:Matematikk og Naturvitenskap: 400::Fysikk: 430 [VDP]010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)finite temperature field theoryParticle Physics - Latticehep-ph115 Astronomy Space scienceHigh Energy Physics - PhenomenologyDistribution functionsymbolsScalar fieldrelativistic heavy-ion collisions
researchProduct

Pinning down QCD-matter shear viscosity in A + A collisions via EbyE fluctuations using pQCD + saturation + hydrodynamics

2015

We compute the initial energy densities produced in ultrarelativistic heavy-ion collisions from NLO perturbative QCD using a saturation conjecture to control soft particle production, and describe the subsequent space-time evolution of the system with hydrodynamics, event by event. The resulting centrality dependence of the low-$p_T$ observables from this pQCD + saturation + hydro ("EKRT") framework are then compared simultaneously to the LHC and RHIC measurements. With such an analysis we can test the initial state calculation, and constrain the temperature dependence of the shear viscosity-to-entropy ratio $\eta/s$ of QCD matter. Using these constraints from the current RHIC and LHC measu…

Nuclear and High Energy PhysicsParticle physicsNuclear TheoryHadronFOS: Physical sciences01 natural sciencesNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Phenomenology (hep-ph)initial energy densities0103 physical sciencesNuclear Experiment010306 general physicsNuclear theoryQCD matterPhysicsLarge Hadron Colliderta114010308 nuclear & particles physicsShear viscosityHigh Energy Physics::PhenomenologyPerturbative QCDObservableheavy-ion collisionsHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentQCD matterNuclear Physics A
researchProduct

Measurement of nuclear effects on ψ(2S) production in p-Pb collisions at √sNN = 8.16 TeV

2020

Inclusive ψ(2S) production is measured in p-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair √sNN = 8.16 TeV, using the ALICE detector at the CERN LHC. The production of ψ(2S) is studied at forward (2.03 < ycms< 3.53) and backward (−4.46 < ycms< −2.96) centre-of-mass rapidity and for transverse momentum pT< 12 GeV/c via the decay to muon pairs. In this paper, we report the integrated as well as the ycms- and pT-differential inclusive production cross sections. Nuclear effects on ψ(2S) production are studied via the determination of the nuclear modification factor that shows a strong suppression at both forward and backward centre-of-mass rapidities. Comparisons with corre…

Nuclear and High Energy PhysicsHeavy Ion ExperimentsHeavy-ion collisionhiukkasfysiikkaydinfysiikka
researchProduct