Search results for "Helmholtz"
showing 10 items of 75 documents
Spectral element method and controllability approach for time-harmonic wave propagation
2008
Ewald Hering und die Gegenfarbtheorie
1996
Ewald Hering's color-opponent-theory is still considered one of the foundations of the visual sciences. Prior to Hering, Hermann v. Helmholtz introduced a theory of color appearance, which was based primarily on the physical aspects of the stimulus. In contrast to Helmholtz, Hering's theory strongly emphasized the subject's perception of color. As a consequence, Hering considered Helmholtz' theory inadequate. Contrary to some historical accounts, he did not object to Helmholtz's three-receptor explanation for color-mixture. Instead of Helmholtz' fundamental colors red, green, and blue, Hering suggested that the colors possess opponent character: blue-yellow; red-green; and, black-white. Hel…
Helium-3 imaging of pulmonary ventilation.
1998
In the first studies in humans, the 3He gas was Helium is an inert, non-radioactive, noble gas. directly inhaled from the glass cell or via a mouth 3He is a rare isotope with a nuclear spin c. As it tip or plastic bag [2, 3]. The estimated inhaled is derived from tritium decay, it is quite expensive. volume in our studies was 400–500 ml. Recently, Non-polarized 3He costs 100–150 US$. Advanwe developed a computer-assisted application tages for applications in humans are: negligible system which is compatible with spontaneous solubility in water or blood, no adverse effects — breathing, assisted or mechanical ventilation. The widely used in deep-sea diving (80% He, 20% lungs can be flushed wi…
Elastoplastic Damaging Model for Adhesive Anchor Systems. I: Theoretical Formulation and Numerical Implementation
2011
In this and in the companion paper, the mechanical response of adhesive anchor systems is theoretically and numerically predicted and experimentally observed. The theoretical prediction is on the basis of an elastoplastic damaging model formulated to predict the structural response associated with the development of a fracture in adhesive anchor systems. This part describes the analytical model developed in the framework of a thermodynamically consistent theory, which assumes adhesion where the structure is sound, and friction in correspondence with the fracture. Isotropic damage is considered. The model can predict the structural behavior at the interface between two surfaces of ductile, b…
Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms
1999
SUMMARY A multiobjective multidisciplinary design optimization (MDO) of two-dimensional airfoil is presented. In this paper, an approximation for the Pareto set of optimal solutions is obtained by using a genetic algorithm (GA). The first objective function is the drag coefficient. As a constraint it is required that the lift coefficient is above a given value. The CFD analysis solver is based on the finite volume discretization of the inviscid Euler equations. The second objective function is equivalent to the integral of the transverse magnetic radar cross section (RCS) over a given sector. The computational electromagnetics (CEM) wave field analysis requires the solution of a two-dimensi…
RECOVERY OF THE SOUND SPEED FOR THE ACOUSTIC WAVE EQUATION FROM PHASELESS MEASUREMENTS
2018
We recover the higher order terms for the acoustic wave equation from measurements of the modulus of the solution. The recovery of these coefficients is reduced to a question of stability for inverting a Hamiltonian flow transform, not the geodesic X-ray transform encountered in other inverse boundary problems like the determination of conformal factors. We obtain new stability results for the Hamiltonian flow transform, which allow to recover the higher order terms.
Controllability method for the Helmholtz equation with higher-order discretizations
2007
We consider a controllability technique for the numerical solution of the Helmholtz equation. The original time-harmonic equation is represented as an exact controllability problem for the time-dependent wave equation. This problem is then formulated as a least-squares optimization problem, which is solved by the conjugate gradient method. Such an approach was first suggested and developed in the 1990s by French researchers and we introduce some improvements to its practical realization. We use higher-order spectral elements for spatial discretization, which leads to high accuracy and lumped mass matrices. Higher-order approximation reduces the pollution effect associated with finite elemen…
Wave Propagation in a 3-D Optical Waveguide
2003
In this paper we study the problem of wave propagation in a 3-D optical fiber. The goal is to obtain a solution for the time-harmonic field caused by a source in a cylindrically symmetric waveguide. The geometry of the problem, corresponding to an open waveguide, makes the problem challenging. To solve it, we construct a transform theory which is a nontrivial generalization of a method for solving a 2-D version of this problem given by Magnanini and Santosa.\cite{MS} The extension to 3-D is made complicated by the fact that the resulting eigenvalue problem defining the transform kernel is singular both at the origin and at infinity. The singularities require the investigation of the behavio…
Helmholtz equation in unbounded domains: some convergence results for a constrained optimization problem
2016
We consider a constrained optimization problem arising from the study of the Helmholtz equation in unbounded domains. The optimization problem provides an approximation of the solution in a bounded computational domain. In this paper we prove some estimates on the rate of convergence to the exact solution.
High-pressure phases, vibrational properties, and electronic structure ofNe(He)2andAr(He)2: A first-principles study
2009
We have carried out a comprehensive first-principles study of the energetic, structural, and electronic properties of solid rare-gas RG-helium binary compounds, in particular, NeHe2 and ArHe2, under pressure and at temperatures within the range of 0T2000 K. Our approach is based on density-functional theory and the generalized gradient approximation for the exchange-correlation energy; we rely on total Helmholtz freeenergy calculations performed within the quasiharmonic approximation for most of our analysis. In NeHe2, we find that at pressures of around 20 GPa the system stabilizes in the MgZn2 Laves structure, in accordance to what was suggested in previous experimental investigations. In…