Search results for "Heptamer"

showing 2 items of 2 documents

Chaperonin of Group I: Oligomeric spectrum and biochemical and biological implications

2018

Chaperonins play various physiological roles and can also be pathogenic. Elucidation of their structure, e.g., oligomeric status and post-translational modifications (PTM), is necessary to understand their functions and mechanisms of action in health and disease. Group I chaperonins form tetradecamers with two stacked heptameric rings. The tetradecamer is considered the typical functional complex for folding of client polypeptides. However, other forms such as the monomer and oligomers with smaller number of subunits than the classical tetradecamer, also occur in cells. The properties and functions of the monomer and oligomers, and their roles in chaperonin-associated diseases are still inc…

0301 basic medicineHeptamerReviewOligomerBiochemistryBiochemistry Genetics and Molecular Biology (miscellaneous)GroELChaperonin03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePost-translation modificationGroup I ChaperoninsMolecular BiosciencesChaperonopathies; GroEL; Heptamer; Hsp60; Monomer; Non-canonical locales; Post-translation modification; Tetradecamer; Biochemistry; Molecular Biology; Biochemistry Genetics and Molecular Biology (miscellaneous)lcsh:QH301-705.5Molecular BiologyTetradecamerChaperonopathiesNon-canonical localesHsp60GroELMicrovesicles3. Good healthMonomer030104 developmental biologychemistrylcsh:Biology (General)030220 oncology & carcinogenesisBiophysicsChaperonopathieProtein foldingHSP60Non-canonical localeFunction (biology)
researchProduct

Staphylococcal α-toxin: the role of the N-terminus in formation of the heptameric pore — a fluorescence study1This work contains parts of the M.D. th…

1997

Staphylococcus aureus alpha-toxin forms heptameric pores on eukaryotic cell membranes. Assembly of the heptamer precedes formation of the transmembrane pore. The latter event depends on a conformational change that drives a centrally located stretch of 15 amino acid residues into the lipid bilayer. A second region of the molecule that has been implicated in the pre-pore to pore transition is the far N-terminus. Here, we used fluorescently labeled single cysteine replacement mutants to analyze the functional role of the far N-terminus of alpha-toxin. Pyrene attached to mutants S3C, I5C and 17C forms excimers within the toxin pore complex. This indicates that the distance of adjacent N-termin…

Conformational changePore complexStereochemistryMembrane lipidsBiophysicsCell BiologyN-terminusα-ToxinBiochemistryTransmembrane proteinchemistry.chemical_compoundProtein structureMembranechemistryHeptameric poreBiophysicsPyreneLipid bilayer(Staphylococcus aureus)Biochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct