Search results for "Heterojunction"

showing 7 items of 227 documents

Surface and interface effects on the current-voltage characteristic curves of multiwall carbon nanotube-Si hybrid junctions selectively probed throug…

2021

The possibility to increase the efficiency of photovoltaic (PV) cells based on hybrid carbon nanotube (CNT)–Si heterojunctions is related to the ability to control the chemical properties of the CNT–Si interface and of the CNT bundle layer. In spite of the encouraging performances of PV cells based on multiwall (MW) CNT, so far few efforts have been made in the study of this device compared to single wall (SW) CNT–Si interfaces. Here, surface and interface effects on the current–voltage characteristic curves of MW CNT–Si hybrid junctions are investigated through exposure to HF vapors and to 10 ppm-NO2 and compared to the effects detected in SW CNT–Si junctions. Quite similar results in term…

heterojunctionsMaterials scienceGeneral Physics and Astronomy02 engineering and technologyCarbon nanotubeMultiwalled carbon nanotubesSettore FIS/03 - FISICA DELLA MATERIA01 natural sciencesnanotubeslaw.inventionlawDesorptionEtching0103 physical sciencesMolecule010302 applied physicsSettore FIS/03carbon nanotubesOpen-circuit voltagebusiness.industryPhotovoltaic cellsHeterojunctionSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnologysolar cellsOptoelectronics0210 nano-technologybusinessShort circuitLayer (electronics)photoemission
researchProduct

3D-ORDERED NANOSCALE HETEROJUNCTIONS IN MOLECULAR THIN FILMS FOR ORGANIC PHOTOVOLTAICS

2011

organic photovoltaicbulk heterojunction3d nanoscale orderSettore CHIM/02 - Chimica Fisica
researchProduct

ORGANOTIN(IV)-PORPHINATE FOR PHOTOVOLTAIC BULK HETEROJUNCTIONS

2013

Due to the versatility and variability of their molecular structures, optical spectra, electrical properties, and supramolecular organization potential, porphyrins related compounds have been widely studied in organic solar cells [1,2]. Indeed, these applications are a natural function for these compounds, and they have been extensively investigated in a variety of formats including single molecules, macromolecular and supramolecular structures. In this work, poly(hexylthiophene) (P3HT) and organotin(IV)-[meso-tetra(4-carboxyphenyl) porphinate] have been employed for engineering planar and bulk heterojunctions by layer by layer deposition. Improving the overall efficiencies of photovoltaic …

porphyrin organotin bulk heterojunctionsSettore CHIM/02 - Chimica Fisica
researchProduct

Effect of the Si doping on the properties of AZO/SiC/Si heterojunctions grown by low temperature pulsed laser deposition

2020

Abstract The structural and photoelectrical properties of Al-doped ZnO (AZO)/SiC/p-Si and AZO/SiC/n-Si heterojunctions, fabricated at low temperature by pulsed laser deposition, were investigated by means of a number of techniques. Raman analysis indicates that SiC layers have the cubic 3C-SiC phase, whilst X-ray diffraction measurements show that AZO films exhibit a hexagonal wurtzite structure, highly textured along the c-axis, with average crystallites size of 35.1 nm and lattice parameter c of 0.518 nm. The homogeneous and dense surface morphology observed by scanning electron microscopy was confirmed by atomic force microscopy images. Moreover, UV–Vis-NIR spectra indicated a high trans…

silicon carbide zinc oxide AZO heterojunction pulsed laser depositionMaterials sciencebusiness.industryDopingHeterojunctionCondensed Matter PhysicsSettore ING-INF/01 - ElettronicaElectronic Optical and Magnetic MaterialsPulsed laser depositionSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMaterials ChemistryOptoelectronicsElectrical and Electronic EngineeringbusinessSemiconductor Science and Technology
researchProduct

Terahertz Spin‐to‐Charge Conversion by Interfacial Skew Scattering in Metallic Bilayers

2021

The efficient conversion of spin to charge transport and vice versa is of major relevance for the detection and generation of spin currents in spin‐based electronics. Interfaces of heterostructures are known to have a marked impact on this process. Here, terahertz (THz) emission spectroscopy is used to study ultrafast spin‐to‐charge‐current conversion (S2C) in about 50 prototypical F|N bilayers consisting of a ferromagnetic layer F (e.g., Ni81Fe19, Co, or Fe) and a nonmagnetic layer N with strong (Pt) or weak (Cu and Al) spin‐orbit coupling. Varying the structure of the F/N interface leads to a drastic change in the amplitude and even inversion of the polarity of the THz charge current. Rem…

spectroscopyMaterials sciencespin-to-charge conversion530 PhysicsTerahertz radiationterahertz emission spectroscopyterahertz emission02 engineering and technologyElectron010402 general chemistry5307. Clean energy01 natural sciencesGeneral Materials ScienceSpectroscopySpin-½Condensed matter physicsScatteringMechanical EngineeringCharge (physics)Heterojunction530 Physik021001 nanoscience & nanotechnology0104 chemical sciencesskew scatteringFerromagnetismMechanics of Materialsinterface; skew scattering; spin-to-charge conversion; terahertz emission spectroscopyinterface0210 nano-technologyAdvanced Materials
researchProduct

Vibrational properties of semiconductor nanowires and nanowire heterostructures: ensembles and single nanowires

2013

symbols.namesakeMaterials scienceSemiconductorbusiness.industryNanowiresymbolsOptoelectronicsGeneral Materials ScienceHeterojunctionCondensed Matter PhysicsbusinessRaman scatteringphysica status solidi (RRL) - Rapid Research Letters
researchProduct

Carbon nanotube derivatives for electro-optical active bulk heterojunctions

2012

thin films solar cells bulk heterojunction carbon nanotubes
researchProduct