Search results for "Hexagonal phase"

showing 7 items of 17 documents

Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural t…

2006

In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (H(II) phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the H(II) phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the con…

Membrane lipidsLipid BilayersMolecular ConformationBiophysicsSynthetic membranebilayer lipidBilayer lipidXanthophyllsBiologyXanthophyll cycleThylakoidsBiochemistryThylakoid membraneMembrane Lipidschemistry.chemical_compoundNon-bilayer lipidMembrane fluidityLipid bilayer phase behaviorDiadinoxanthinInverted hexagonal phaseUnilamellar LiposomesDiatomsPhosphatidylethanolamineLiposomeGalactolipidsPhosphatidylethanolaminesBilayerHexagonal phaseWaterxanthophyll cycleMembranes ArtificialCell Biologythylakoid membraneinverted hexagonal phaseKineticsCrystallographydiadinoxanthinSolubilitychemistryOxygenasesPhosphatidylcholinesnon-bilayer lipidlipids (amino acids peptides and proteins)
researchProduct

Magnetic properties of GdPdSb and GdNiSb studied by 155Gd-Mössbauer spectroscopy

2009

Abstract 155 Gd-Mossbauer spectroscopy was applied to study the magnetic properties of GdPdSb with hexagonal LiGaGe structure and of GdNiSb in the cubic MgAgAs-type structure as well as in the hexagonal AlB 2 -type structure. In GdPdSb magnetic ordering is observed at 13.0 K with indications of a tilted spin structure at lower temperatures. In the cubic phase of GdNiSb magnetic ordering is observed at 9.5 K and in the hexagonal phase around 3.5 K. These results are discussed in conjunction with previous investigations of these samples.

Mössbauer effectCondensed matter physicsMagnetic structureChemistryMechanical EngineeringMetals and AlloysHexagonal phaseSpin structureMagnetizationMechanics of MaterialsPhase (matter)Mössbauer spectroscopyMaterials ChemistrySpectroscopyJournal of Alloys and Compounds
researchProduct

Selenium Nanoparticles Synthesized via a Facile Hydrothermal Method

2012

Crystalline selenium nanostructures were synthesized from the reaction of a GeSe3 glass with water at 85°C for 144 hours. The hydrolysis of the Ge-Se bonds releases Se fragments in the solution where they form a colloidal suspension of amorphous nanospheres. The later evolve toward a more stable hexagonal phase (trigonal) leading to the anisotropic growth of one-dimensional monocrystalline structures. Filaments, bars and tubes of monocrystalline trigonal selenium were obtained with diameters ranging from 10 nm to 1 µm and aspect ratio up to 180. This simple process in aqueous solution opens new perspectives for the synthesis of 1D nanoparticles of trigonal selenium at large scale.

NanostructureMaterials scienceAqueous solutionInorganic chemistryGeneral EngineeringHexagonal phaseNanoparticlechemistry.chemical_elementChalcogenide glassAmorphous solidMonocrystalline siliconchemistryChemical engineeringSeleniumAdvanced Materials Research
researchProduct

Dynamics of the labyrinthine patterns at the diffuse phase boundaries

2001

The phase diagram of a magnetic colloid in a Hele-Shaw cell is calculated. As a function of the magnetic field strength, of the concentration and of the layer thickness the magnetic colloid can find itself in a stripe phase, the hexagonal phase or in an unmodulated state. Those results allow to interpret experiments observing the transformation of a labyrinthine pattern into a hexagonal structure. This possibility is confirmed directly by the numerical simulation presented here and showing the transformation of the labyrinthine pattern into the hexagonal structure.

PhysicsComputer simulationCondensed matter physicsgenetic structuresDynamics (mechanics)Hexagonal phaseGeneral Physics and Astronomyequipment and suppliesLayer thicknessMagnetic fieldCondensed Matter::Soft Condensed MatterTransformation (function)Phase (matter)human activitiesNonlinear Sciences::Pattern Formation and SolitonsPhase diagram
researchProduct

Large thermoelectric figure of merit in hexagonal phase of 2D selenium and tellurium

2020

Thermoelectric figure of meritMaterials sciencechemistryCondensed matter physicsHexagonal phasechemistry.chemical_elementDensity functional theoryPhysical and Theoretical ChemistryCondensed Matter PhysicsTelluriumThermoelectric materialsAtomic and Molecular Physics and OpticsSeleniumInternational Journal of Quantum Chemistry
researchProduct

Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation

2005

In this study, we have examined the influence of different lipids on the solubility of the xanthophyll cycle pigments diadinoxanthin (Ddx) and violaxanthin (Vx) and on the efficiency of Ddx and Vx de-epoxidation by the enzymes Vx de-epoxidase (VDE) from wheat and Ddx de-epoxidase (DDE) from the diatom Cyclotella meneghiniana, respectively. Our results show that the lipids MGDG and PE are able to solubilize both xanthophyll cycle pigments in an aqueous medium. Substrate solubilization is essential for de-epoxidase activity, because in the absence of MGDG or PE Ddx and Vx are present in an aggregated form, with limited accessibility for DDE and VDE. Our results also show that the hexagonal st…

chemistry.chemical_classificationDiatomsBilayerGalactolipidsPhosphatidylethanolaminesLipid BilayersHexagonal phaseDiadinoxanthinSubstrate (chemistry)BiologyXanthophyllsbeta CaroteneBiochemistrySubstrate Specificitychemistry.chemical_compoundEnzymeBiochemistrychemistrySolubilityXanthophyllThylakoidPhosphatidylcholinesOxidoreductasesViolaxanthin
researchProduct

Structures, properties and miscibility behaviour of liquid crystalline polycatenar tetrone derivatives

1995

Abstract The tetrones represent an interesting new mesogenic building block. The results of this study show that they can be incorporated into a variety of mesophases. A smectic phase was observed in the polycatenar compound with four terminal chains as expected. The phase exhibits a tilted structure (Sc phase) to prevent void formation. The compound with six pendant chains forms a columnar phase. In spite of their structural similarity, the tetrones studied tended not to be completely miscible. However, complete miscibility with a semi-discoid phenylhydrazone was observed. When this hydrazone, which forms a columnar ‘Dho phase’, was mixed with tetrone which forms a columnar ‘Dhd phase’ a c…

chemistry.chemical_classificationVoid (astronomy)Materials scienceLiquid crystallineMesogenHexagonal phaseHydrazoneGeneral ChemistryCondensed Matter PhysicsMiscibilityCrystallographychemistryLiquid crystalOrganic chemistryGeneral Materials ScienceColumnar phaseLiquid Crystals
researchProduct