Search results for "High Dimension"

showing 10 items of 19 documents

Image retrieval system for citizen services using penalized logistic regression models

2020

This paper describes a procedure to deal with large image collections obtained by smart city services based on interaction with citizens providing pictures. The semantic gap between the low-level image features and represented concepts and situations has been addressed using image retrieval techniques. A relevance feedback procedure is proposed for Content-Based Image Retrieval (CBIR) based on the modelling of user responses. One of the novelties of the proposal is that the feedback learning procedure can use the information that citizens themselves can provide when using these services.The proposed algorithm considers the probability of an image belonging to the set of those sought by the …

020203 distributed computingInformation retrievalComputer scienceRelevance feedback02 engineering and technologyLogistic regressionImage (mathematics)Set (abstract data type)Smart city0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingHigh dimensionalityImage retrievalSemantic gapProceedings of the 10th Euro-American Conference on Telematics and Information Systems
researchProduct

LipidMS: An R Package for Lipid Annotation in Untargeted Liquid Chromatography-Data Independent Acquisition-Mass Spectrometry Lipidomics.

2018

High resolution LC-MS untargeted lipidomics using data independent acquisition (DIA) has the potential to increase lipidome coverage, as it enables the continuous and unbiased acquisition of all eluting ions. However, the loss of the link between the precursor and the product ions combined with the high dimensionality of DIA data sets hinder accurate feature annotation. Here, we present LipidMS, an R package aimed to confidently identify lipid species in untargeted LC-DIA-MS. To this end, LipidMS combines a coelution score, which links precursor and fragment ions with fragmentation and intensity rules. Depending on the MS evidence reached by the identification function survey, LipidMS provi…

0301 basic medicineChromatographyChemistry010401 analytical chemistryLipidomeMass spectrometry01 natural sciencesLipids0104 chemical sciencesAnalytical Chemistry03 medical and health sciencesR packageAnnotation030104 developmental biologyNon-alcoholic Fatty Liver DiseaseTandem Mass SpectrometryLipidomicsLipidomicsHumansData-independent acquisitionHigh dimensionalityData dependentBiomarkersDatabases ChemicalChromatography LiquidAnalytical chemistry
researchProduct

LogDet divergence-based metric learning with triplet constraints and its applications.

2014

How to select and weigh features has always been a difficult problem in many image processing and pattern recognition applications. A data-dependent distance measure can address this problem to a certain extent, and therefore an accurate and efficient metric learning becomes necessary. In this paper, we propose a LogDet divergence-based metric learning with triplet constraints (LDMLT) approach, which can learn Mahalanobis distance metric accurately and efficiently. First of all, we demonstrate the good properties of triplet constraints and apply it in LogDet divergence-based metric learning model. Then, to deal with high-dimensional data, we apply a compressed representation method to learn…

AutomatedData InterpretationBiometryFeature extractionhigh dimensional datametric learningPattern RecognitionFacial recognition systemSensitivity and SpecificityMatrix decompositionPattern Recognition Automatedcompressed representationComputer-AssistedArtificial Intelligencecompressed representation; high dimensional data; LogDet divergence; metric learning; triplet constraint; Artificial Intelligence; Biometry; Data Interpretation Statistical; Face; Humans; Image Enhancement; Image Interpretation Computer-Assisted; Pattern Recognition Automated; Photography; Reproducibility of Results; Sensitivity and Specificity; Algorithms; Facial Expression; Software; Medicine (all); Computer Graphics and Computer-Aided DesignImage Interpretation Computer-AssistedPhotographyHumansDivergence (statistics)Image retrievalImage InterpretationMathematicsMahalanobis distancebusiness.industryLogDet divergenceMedicine (all)Reproducibility of ResultsPattern recognitionStatisticalImage EnhancementComputer Graphics and Computer-Aided DesignFacial ExpressionComputingMethodologies_PATTERNRECOGNITIONComputer Science::Computer Vision and Pattern RecognitionData Interpretation StatisticalFaceMetric (mathematics)Pattern recognition (psychology)Artificial intelligencetriplet constraintbusinessSoftwareAlgorithmsIEEE transactions on image processing : a publication of the IEEE Signal Processing Society
researchProduct

Variability of Classification Results in Data with High Dimensionality and Small Sample Size

2021

The study focuses on the analysis of biological data containing information on the number of genome sequences of intestinal microbiome bacteria before and after antibiotic use. The data have high dimensionality (bacterial taxa) and a small number of records, which is typical of bioinformatics data. Classification models induced on data sets like this usually are not stable and the accuracy metrics have high variance. The aim of the study is to create a preprocessing workflow and a classification model that can perform the most accurate classification of the microbiome into groups before and after the use of antibiotics and lessen the variability of accuracy measures of the classifier. To ev…

Classification algorithms; feature selection; high dimensionality; machine learningInformation Technology and Management Science
researchProduct

An Extension of the DgLARS Method to High-Dimensional Relative Risk Regression Models

2020

In recent years, clinical studies, where patients are routinely screened for many genomic features, are becoming more common. The general aim of such studies is to find genomic signatures useful for treatment decisions and the development of new treatments. However, genomic data are typically noisy and high dimensional, not rarely outstripping the number of patients included in the study. For this reason, sparse estimators are usually used in the study of high-dimensional survival data. In this paper, we propose an extension of the differential geometric least angle regression method to high-dimensional relative risk regression models.

Clustering high-dimensional dataComputer sciencedgLARS Gene expression data High-dimensional data Relative risk regression models Sparsity · Survival analysisLeast-angle regressionRelative riskStatisticsEstimatorRegression analysisExtension (predicate logic)High dimensionalSettore SECS-S/01 - StatisticaSurvival analysis
researchProduct

Approximation of functions over manifolds : A Moving Least-Squares approach

2021

We present an algorithm for approximating a function defined over a $d$-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not require any knowledge regarding the manifold other than its dimension $d$. We use the Manifold Moving Least-Squares approach of (Sober and Levin 2016) to reconstruct the atlas of charts and the approximation is built on-top of those charts. The resulting approximant is shown to be a function defined over a neighborhood of a manifold, approximating the originally sampled manifold. In other words, given a new point, located near the manifold, the approximation can be evaluated…

Computational Geometry (cs.CG)FOS: Computer and information sciencesComputer Science - Machine LearningClosed manifolddimension reductionMachine Learning (stat.ML)010103 numerical & computational mathematicsComplex dimensionTopology01 natural sciencesMachine Learning (cs.LG)Volume formComputer Science - GraphicsStatistics - Machine Learningmanifold learningApplied mathematics0101 mathematicsfunktiotMathematicsManifold alignmentAtlas (topology)Applied Mathematicshigh dimensional approximationManifoldGraphics (cs.GR)Statistical manifold010101 applied mathematicsregression over manifoldsComputational Mathematicsout-of-sample extensionComputer Science - Computational Geometrynumeerinen analyysimonistotapproksimointimoving least-squaresCenter manifold
researchProduct

Using differential LARS algorithm to study the expression profile of a sample of patients with latex-fruit syndrome

2010

Natural rubber latex IgE-mediated hypersensitivity is one of the most important health problems in allergy during recent years. The prevalence of individuals allergic to latex shows an associated hypersensitivity to some plant-derived foods, especially freshly consumed fruit. This association of latex allergy and allergy to plant-derived foods is called latex-fruit syndrome. The aim of this study is to use the differential geometric generalization of the LARS algorithm to identify candidate genes that may be associated with the pathogenesis of allergy to latex or vegetable food.

Latex-fruit syndrome variable selection penalized regression high dimensionality LARS.Settore SECS-S/01 - Statistica
researchProduct

2014

Large data sets classification is widely used in many industrial applications. It is a challenging task to classify large data sets efficiently, accurately, and robustly, as large data sets always contain numerous instances with high dimensional feature space. In order to deal with this problem, in this paper we present an online Logdet divergence based metric learning (LDML) model by making use of the powerfulness of metric learning. We firstly generate a Mahalanobis matrix via learning the training data with LDML model. Meanwhile, we propose a compressed representation for high dimensional Mahalanobis matrix to reduce the computation complexity in each iteration. The final Mahalanobis mat…

Mahalanobis distanceTraining setApplied MathematicsFeature vectorHigh dimensionalcomputer.software_genreComputation complexityData miningBenchmark dataClassifier (UML)computerAlgorithmAnalysisMathematicsAbstract and Applied Analysis
researchProduct

Monitoring of chicken meat freshness by means of a colorimetric sensor array

2012

A new optoelectronic nose to monitor chicken meat ageing has been developed. It is based on 16 pigments prepared by the incorporation of different dyes (pH indicators, Lewis acids, hydrogenbonding derivatives, selective probes and natural dyes) into inorganic materials (UVM-7, silica and alumina). The colour changes of the sensor array were characteristic of chicken ageing in a modi¿ed packaging atmosphere (30% CO2¿70% N2). The chromogenic array data were processed with qualitative (PCA) and quantitative (PLS) tools. The PCA statistical analysis showed a high degree of dispersion, with nine dimensions required to explain 95% of variance. Despite this high dimensionality, a tridimensional re…

Quality ControlINGENIERIA DE LA CONSTRUCCIONMeatTime FactorsMaterials scienceAnalytical chemistryColorimetric sensor arrayBiochemistryAnalytical ChemistryQUIMICA ORGANICASensor arrayLinear regressionQUIMICA ANALITICAElectrochemistryAnimalsEnvironmental ChemistryStatistical analysisLeast-Squares AnalysisPROYECTOS DE INGENIERIASpectroscopyPrincipal Component AnalysisPigmentationChromogenicQUIMICA INORGANICAPrincipal component analysisColorimetryIndicators and ReagentsInorganic materialsHigh dimensionalityBiological systemChickensFood Analysis
researchProduct

Using differential geometric LARS algorithm to study the expression profile of a sample of patients with latex-fruit syndrome

2011

Natural rubber latex IgE-mediated hypersensitivity is one of the most important health problems in allergy during recent years. The prevalence of individuals allergic to latex shows an associated hypersensitivity to some plant-derived foods, especially freshly consumed fruit. This association of latex allergy and allergy to plant-derived foods is called latex-fruit syndrome. The aim of this study is to use the differential geometric generalization of the LARS algorithm to identify candidate genes that may be associated with the pathogenesis of allergy to latex or vegetable.

Settore SECS-S/01 - StatisticaLatex-fruit syndrome variable selection penalized regression high dimensional LARS
researchProduct