Search results for "High-dimensional data"
showing 10 items of 29 documents
gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models inr
2019
The work of J.N. was supported by the Wihuri Foundation. The work of S.T. was supported by the CRoNoS COST Action IC1408.F.K.C.H. was also supported by an ANU cross disciplinary grant.
Quantum clustering in non-spherical data distributions: Finding a suitable number of clusters
2017
Quantum Clustering (QC) provides an alternative approach to clustering algorithms, several of which are based on geometric relationships between data points. Instead, QC makes use of quantum mechanics concepts to find structures (clusters) in data sets by finding the minima of a quantum potential. The starting point of QC is a Parzen estimator with a fixed length scale, which significantly affects the final cluster allocation. This dependence on an adjustable parameter is common to other methods. We propose a framework to find suitable values of the length parameter σ by optimising twin measures of cluster separation and consistency for a given cluster number. This is an extension of the Se…
L1-Penalized Censored Gaussian Graphical Model
2018
Graphical lasso is one of the most used estimators for inferring genetic networks. Despite its diffusion, there are several fields in applied research where the limits of detection of modern measurement technologies make the use of this estimator theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. Typical examples are data generated by polymerase chain reactions and flow cytometer. The combination of censoring and high-dimensionality make inference of the underlying genetic networks from these data very challenging. In this article, we propose an $\ell_1$-penalized Gaussian graphical model for censored data and derive two EM-like algorithm…
The on-line curvilinear component analysis (onCCA) for real-time data reduction
2015
Real time pattern recognition applications often deal with high dimensional data, which require a data reduction step which is only performed offline. However, this loses the possibility of adaption to a changing environment. This is also true for other applications different from pattern recognition, like data visualization for input inspection. Only linear projections, like the principal component analysis, can work in real time by using iterative algorithms while all known nonlinear techniques cannot be implemented in such a way and actually always work on the whole database at each epoch. Among these nonlinear tools, the Curvilinear Component Analysis (CCA), which is a non-convex techni…
Computation Cluster Validation in the Big Data Era
2017
Data-driven class discovery, i.e., the inference of cluster structure in a dataset, is a fundamental task in Data Analysis, in particular for the Life Sciences. We provide a tutorial on the most common approaches used for that task, focusing on methodologies for the prediction of the number of clusters in a dataset. Although the methods that we present are general in terms of the data for which they can be used, we offer a case study relevant for Microarray Data Analysis.
A local complexity based combination method for decision forests trained with high-dimensional data
2012
Accurate machine learning with high-dimensional data is affected by phenomena known as the “curse” of dimensionality. One of the main strategies explored in the last decade to deal with this problem is the use of multi-classifier systems. Several of such approaches are inspired by the Random Subspace Method for the construction of decision forests. Furthermore, other studies rely on estimations of the individual classifiers' competence, to enhance the combination in the multi-classifier and improve the accuracy. We propose a competence estimate which is based on local complexity measurements, to perform a weighted average combination of the decision forest. Experimental results show how thi…
An Extension of the DgLARS Method to High-Dimensional Relative Risk Regression Models
2020
In recent years, clinical studies, where patients are routinely screened for many genomic features, are becoming more common. The general aim of such studies is to find genomic signatures useful for treatment decisions and the development of new treatments. However, genomic data are typically noisy and high dimensional, not rarely outstripping the number of patients included in the study. For this reason, sparse estimators are usually used in the study of high-dimensional survival data. In this paper, we propose an extension of the differential geometric least angle regression method to high-dimensional relative risk regression models.
GenClust: A genetic algorithm for clustering gene expression data
2005
Abstract Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a) a novel coding of the search space that is simple, …
Data Analysis and Bioinformatics
2007
Data analysis methods and techniques are revisited in the case of biological data sets. Particular emphasis is given to clustering and mining issues. Clustering is still a subject of active research in several fields such as statistics, pattern recognition, and machine learning. Data mining adds to clustering the complications of very large data-sets with many attributes of different types. And this is a typical situation in biology. Some cases studies are also described.
Distance Functions, Clustering Algorithms and Microarray Data Analysis
2010
Distance functions are a fundamental ingredient of classification and clustering procedures, and this holds true also in the particular case of microarray data. In the general data mining and classification literature, functions such as Euclidean distance or Pearson correlation have gained their status of de facto standards thanks to a considerable amount of experimental validation. For microarray data, the issue of which distance function works best has been investigated, but no final conclusion has been reached. The aim of this extended abstract is to shed further light on that issue. Indeed, we present an experimental study, involving several distances, assessing (a) their intrinsic sepa…