Search results for "High-pressures"
showing 3 items of 3 documents
Phase behaviour of Ag2CrO4 under compression: Structural, vibrational, and optical properties
2013
We have performed an experimental study of the crystal structure, lattice dynamics, and optical properties of silver chromate (Ag2CrO4) at ambient temperature and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band gap have been accurately determined. When the initial orthorhombic Pnma Ag2CrO4 structure (phase I) is compressed up to 4.5 GPa, a previously undetected phase (phase II) has been observed with a 0.95% volume collapse. The structure of phase II can be indexed to a similar orthorhombic cell as phase I, and the transition can be considered to be an isostructural transition. This collapse is mainly due to the drastic contraction of the a ax…
Compression of Silver Sulfide: X-ray Diffraction Measurements and Total-Energy Calculations
2012
[EN] Angle-dispersive X-ray diffraction measurements have been performed in acanthite, Ag2S, up to 18 GPa in order to investigate its high-pressure structural behavior. They have been complemented by ab initio electronic structure calculations. From our experimental data, we have determined that two different high-pressure phase transitions take place at 5 and 10.5 GPa. The first pressure-induced transition is from the initial anti-PbCl2-like monoclinic structure (space group P2(1)/n) to an orthorhombic Ag2Se-type structure (space group P2(1)2(1)2(1)). The compressibility of the lattice parameters and the equation of state of both phases have been determined. A second phase transition to a …
Perylenetetracarboxylic anhydride as a precursor of fluorescent carbon nanoonion rings
2015
[EN] Thermal annealing at 400 degrees C of perylenetetracarboxylic anhydride in low molecular mass PEG gives rise to the formation of well defined nanoobjects of 2.5 nm height and size distribution from 10 to 65 nm (average 40 nm) after purification of the raw mixture with silicagel chromatography. TEM reveals that the flat nanoobjects are constituted of concentric graphenic rings (0.34 nm interlayer distance). The morphology of the nanoparticles resembles onion rings of nanometric dimensions (nanoonion rings C-NOR). C-NOR particles have an excitation dependent emission with lambda(em) from 430 to 570 nm and a maximum emission quantum yield of 0.49. C-NOR particles can be internalized into …