Search results for "Hilbert spaces"

showing 10 items of 22 documents

Finding Electron-Hole Interaction in Quantum Kinetic Framework

2018

The present research has been supported by the Institute of Solid State Physics, the University of Latvia within the framework of National Research Program IMIS2. [Grant numbers VPPI IMIS2, IMIS4].

PhysicsHilbert spaces010308 nuclear & particles physicsPhysicsQC1-999General EngineeringHilbert spaceGeneral Physics and AstronomyElectron holeKinetic energy01 natural sciencessymbols.namesakeQuantum mechanics0103 physical sciencessymbols:NATURAL SCIENCES:Physics [Research Subject Categories]quantum electrodynamicsphotoexcited electron-hole pairhilbert spaces010306 general physicsQuantumLatvian Journal of Physics and Technical Sciences
researchProduct

The Schur property on projective and injective tensor products

2008

The problem of whether the Schur property is passed from a Banach space to its (symmetric) projective n-fold tensor product is reformu lated in the language of polynomial ideals. As a result, a very closely related question is solved in the negative. It is also proved that the injective tensor product of infrabarrelled locally convex spaces with the Schur property has the Schur property as well.

PolynomialPure mathematicsTensor product of algebrasApplied MathematicsGeneral MathematicsTensor product of Hilbert spacesBanach spaceInjective functionAlgebraTensor productLocally convex topological vector spaceTensor product of modulesMathematics::Representation TheoryMathematicsProceedings of the American Mathematical Society
researchProduct

Distributions Frames and bases

2018

In this paper we will consider, in the abstract setting of rigged Hilbert spaces, distribution valued functions and we will investigate, in particular, conditions for them to constitute a "continuous basis" for the smallest space $\mathcal D$ of a rigged Hilbert space. This analysis requires suitable extensions of familiar notions as those of frame, Riesz basis and orthonormal basis. A motivation for this study comes from the Gel'fand-Maurin theorem which states, under certain conditions, the existence of a family of generalized eigenvectors of an essentially self-adjoint operator on a domain $\mathcal D$ which acts like an orthonormal basis of the Hilbert space $\mathcal H$. The correspond…

Pure mathematicsGeneral Mathematics02 engineering and technologyBaseDistributionSpace (mathematics)01 natural sciencessymbols.namesakeSettore MAT/05 - Analisi MatematicaGeneralized eigenvector0202 electrical engineering electronic engineering information engineeringFOS: MathematicsFrameOrthonormal basisRigged Hilbert spaces0101 mathematicsMathematicsBasis (linear algebra)Applied MathematicsOperator (physics)010102 general mathematics47A70 42C15 42C30Hilbert space020206 networking & telecommunicationsRigged Hilbert spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisDistribution (mathematics)symbolsAnalysis
researchProduct

Tensor products of Fréchet or (DF)-spaces with a Banach space

1992

Abstract The aim of the present article is to study the projective tensor product of a Frechet space and a Banach space and the injective tensor product of a (DF)-space and a Banach space. The main purpose is to analyze the connection of the good behaviour of the bounded subsets of the projective tensor product and of the locally convex structure of the injective tensor product with the local structure of the Banach space.

Pure mathematicsMathematics::Functional AnalysisApproximation propertyApplied MathematicsMathematical analysisEberlein–Šmulian theoremInfinite-dimensional vector functionBanach spaceTensor product of Hilbert spacesBanach manifoldTensor productTensor product of modulesAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Rigged Hilbert spaces and contractive families of Hilbert spaces

2013

The existence of a rigged Hilbert space whose extreme spaces are, respectively, the projective and the inductive limit of a directed contractive family of Hilbert spaces is investigated. It is proved that, when it exists, this rigged Hilbert space is the same as the canonical rigged Hilbert space associated to a family of closable operators in the central Hilbert space.

Pure mathematicsMathematics::Operator AlgebrasGeneral MathematicsHilbert spaceRigged Hilbert spaceDirect limitPhysics::Classical PhysicsFunctional Analysis (math.FA)Mathematics - Functional Analysissymbols.namesakeSettore MAT/05 - Analisi Matematica47A70 46A13 46M40Mathematics::Quantum AlgebrasymbolsFOS: MathematicsRigged Hilbert spaces · Inductive and projective limitsMathematics
researchProduct

Bessel sequences, Riesz-like bases and operators in Triplets of Hilbert spaces

2016

Riesz-like bases for a triplet of Hilbert spaces are investigated, in connection with an analogous study for more general rigged Hilbert spaces performed in a previous paper. It is shown, in particular, that every \(\omega \)-independent, complete (total) Bessel sequence is a (strict) Riesz-like basis in a convenient triplet of Hilbert spaces. An application to non self-adjoint Schrodinger-type operators is considered. Moreover, some of the simplest operators we can define by them and their dual bases are studied.

Pure mathematicsSequenceBasis (linear algebra)010308 nuclear & particles physics010102 general mathematicsHilbert spaceRiesz bases quasi-Hermitian operators rigged Hilbert spaces01 natural sciencesSchauder basissymbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciencessymbols0101 mathematicsConnection (algebraic framework)Bessel functionMathematics
researchProduct

On distinguished polynomials and their projections

2012

We study projections and injections between projective tensor products spaces or spaces of polynomials and we show that the example of a polynomial constructed in (4), that is neither p-dominated nor compact, can be identified with the projection map of the symmetric tensor product onto the space. Also we give a characterization of the weak and quasi approximation properties on symmetric tensor products.

Pure mathematicsTensor productTensor product of algebrasPower sum symmetric polynomialGeneral MathematicsTopological tensor productMathematical analysisTensor product of Hilbert spacesSymmetric tensorElementary symmetric polynomialTensor densityMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

On non-self-adjoint operators defined by Riesz bases in Hilbert and rigged Hilbert spaces

2018

In this paper we discuss some results on non self-adjoint Hamiltonians with real discrete simple spectrum under the assumption that their eigenvectors form Riesz bases of a certain Hilbert space. Also, we exhibit a generalization of those results to the case of rigged Hilbert spaces, and we also consider the problem of the factorization of the aforementioned Hamiltonians in terms of generalized lowering and raising operators.

Pure mathematicssymbols.namesakeNon self-adjoint Hamiltonians Riesz bases rigged Hilbert spacesSettore MAT/05 - Analisi MatematicaHilbert spacesymbolsSelf-adjoint operatorMathematics
researchProduct

Operators in rigged Hilbert spaces: toward a spectral analysis

Settore MAT/05 - Analisi Matematicarigged Hilbert spaces partial *-algebras.
researchProduct

Some algebraic and topological properties of the nonabelian tensor product

2013

Several authors investigated the properties which are invariant under the passage from a group to its nonabelian tensor square. In the present note we study this problem from the viewpoint of the classes of groups and the methods allow us to prove a result of invariance for some geometric properties of discrete groups.

Tensor contractionNonabelian tensor productTensor product of algebrasGeneral MathematicsTensor product of Hilbert spaceshomologyTopologyAlgebraalgebraic topologyTensor productSymmetric tensorRicci decompositionwsg propertyTensor product of modulesfree productSettore MAT/03 - GeometriaTensor densityMathematics
researchProduct