Search results for "Hilbert spaces"
showing 10 items of 22 documents
Finding Electron-Hole Interaction in Quantum Kinetic Framework
2018
The present research has been supported by the Institute of Solid State Physics, the University of Latvia within the framework of National Research Program IMIS2. [Grant numbers VPPI IMIS2, IMIS4].
The Schur property on projective and injective tensor products
2008
The problem of whether the Schur property is passed from a Banach space to its (symmetric) projective n-fold tensor product is reformu lated in the language of polynomial ideals. As a result, a very closely related question is solved in the negative. It is also proved that the injective tensor product of infrabarrelled locally convex spaces with the Schur property has the Schur property as well.
Distributions Frames and bases
2018
In this paper we will consider, in the abstract setting of rigged Hilbert spaces, distribution valued functions and we will investigate, in particular, conditions for them to constitute a "continuous basis" for the smallest space $\mathcal D$ of a rigged Hilbert space. This analysis requires suitable extensions of familiar notions as those of frame, Riesz basis and orthonormal basis. A motivation for this study comes from the Gel'fand-Maurin theorem which states, under certain conditions, the existence of a family of generalized eigenvectors of an essentially self-adjoint operator on a domain $\mathcal D$ which acts like an orthonormal basis of the Hilbert space $\mathcal H$. The correspond…
Tensor products of Fréchet or (DF)-spaces with a Banach space
1992
Abstract The aim of the present article is to study the projective tensor product of a Frechet space and a Banach space and the injective tensor product of a (DF)-space and a Banach space. The main purpose is to analyze the connection of the good behaviour of the bounded subsets of the projective tensor product and of the locally convex structure of the injective tensor product with the local structure of the Banach space.
Rigged Hilbert spaces and contractive families of Hilbert spaces
2013
The existence of a rigged Hilbert space whose extreme spaces are, respectively, the projective and the inductive limit of a directed contractive family of Hilbert spaces is investigated. It is proved that, when it exists, this rigged Hilbert space is the same as the canonical rigged Hilbert space associated to a family of closable operators in the central Hilbert space.
Bessel sequences, Riesz-like bases and operators in Triplets of Hilbert spaces
2016
Riesz-like bases for a triplet of Hilbert spaces are investigated, in connection with an analogous study for more general rigged Hilbert spaces performed in a previous paper. It is shown, in particular, that every \(\omega \)-independent, complete (total) Bessel sequence is a (strict) Riesz-like basis in a convenient triplet of Hilbert spaces. An application to non self-adjoint Schrodinger-type operators is considered. Moreover, some of the simplest operators we can define by them and their dual bases are studied.
On distinguished polynomials and their projections
2012
We study projections and injections between projective tensor products spaces or spaces of polynomials and we show that the example of a polynomial constructed in (4), that is neither p-dominated nor compact, can be identified with the projection map of the symmetric tensor product onto the space. Also we give a characterization of the weak and quasi approximation properties on symmetric tensor products.
On non-self-adjoint operators defined by Riesz bases in Hilbert and rigged Hilbert spaces
2018
In this paper we discuss some results on non self-adjoint Hamiltonians with real discrete simple spectrum under the assumption that their eigenvectors form Riesz bases of a certain Hilbert space. Also, we exhibit a generalization of those results to the case of rigged Hilbert spaces, and we also consider the problem of the factorization of the aforementioned Hamiltonians in terms of generalized lowering and raising operators.
Operators in rigged Hilbert spaces: toward a spectral analysis
Some algebraic and topological properties of the nonabelian tensor product
2013
Several authors investigated the properties which are invariant under the passage from a group to its nonabelian tensor square. In the present note we study this problem from the viewpoint of the classes of groups and the methods allow us to prove a result of invariance for some geometric properties of discrete groups.