Search results for "Histones"
showing 10 items of 200 documents
Generation and characterization of tTS-H4: a novel transcriptional repressor that is compatible with the reverse tetracycline-controlled TET-ON system
2007
Background Conditional gene regulatory systems ensuring tight and adjustable expression of therapeutic genes are central for developing future gene therapy strategies. Among various regulatory systems, tetracycline-controlled gene expression has emerged as a safe and reliable option. Moreover, the tightness of tetracycline-regulated gene switches can be substantially improved by complementing transcriptional activators with antagonizing repressors. Methods To develop novel tetracycline-responsive transcriptional repressors, we fused various transcriptional silencing domains to the TetR (B/E) DNA-binding and dimerization domain of the Tn10-encoded tetracycline resistance operon (TetR (B/E)).…
Dynamic remodeling of histone modifications in response to osmotic stress in Saccharomyces cerevisiae.
2014
Abstract Background Specific histone modifications play important roles in chromatin functions; i.e., activation or repression of gene transcription. This participation must occur as a dynamic process. Nevertheless, most of the histone modification maps reported to date provide only static pictures that link certain modifications with active or silenced states. This study, however, focuses on the global histone modification variation that occurs in response to the transcriptional reprogramming produced by a physiological perturbation in yeast. Results We did a genome-wide chromatin immunoprecipitation analysis for eight specific histone modifications before and after saline stress. The most…
Regulation of the sea urchin early H2A histone gene expression depends on the modulator element and on sequences located near the 3' end
1999
Abstract Transcription of the sea urchin early histone genes occurs transiently during early cleavage, reaching the maximum at the morula stage and declining to an undetectable level at the gastrula stage. To identify the regulatory elements responsible for the timing and the levels of transcription of the H2A gene, we used promoter binding studies in nuclear extracts and microinjection of a CAT transgene driven by the early H2A promoter. We found that morula and gastrula nuclear proteins produced indistinguishable DNase I footprint patterns on the H2A promoter. Two sites of interactions, centred on the modulator/enhancer and on the CCAAT box respectively, were detected. Deletion of the mod…
The modulator is a constitutive enhancer of a developmentally regulated sea urchin histone H2A gene.
2002
Going back to the late 1970s and early 1980s, we trace the Xenopus oocyte microinjection experiments that led to the emergence of the concept of “modulator”. The finding that the modulator could transactivate transcription from far upstream and in either orientation suggested that a new genetic element, different from the classical prokaryotic promoter sequences, had been discovered. This particular enhancer transactivates transcription of the sea urchin early (α) histone H2A gene which is regulated in early sea urchin development. We summarise the data from sea urchin microinjection experiments that confirm and extend the results obtained with Xenopus oocytes. We conclude that the H2A enha…
Use of the Transglutaminase Reaction To Study the Dissociation of Histone N-Terminal Tails from DNA in Nucleosome Core Particles
1997
We have recently shown that core histones are glutaminyl substrates for transglutaminase (TGase) and that when native nucleosome cores are incubated with monodansylcadaverine (DNC) as donor amine, this fluorescent probe is incorporated into Gln5 and Gln19 of H3 and in Gln22 of H2B [Ballestar et al. (1996) J. Biol. Chem. 271, 18817-18825]. In the present paper, we report that the cause by which Gln22 of H2B is modified in nucleosomes but not in the free histone is the interaction of the region containing that glutamine with DNA. We have used the specificity of the TGase reaction to study the changes induced by increasing ionic strength in the interaction between the histone N-terminal tails …
Drosophila melanogaster histone H2B retropseudogene is inserted into a region rich in transposable elements.
1998
We have isolated and characterized the genomic sequence of a Drosophila melanogaster histone H2B pseudogene that is localized outside of the cluster of the replication-dependent histone genes and has all the properties of a retropseudogene. It is highly homologous to the transcribed region of the D. melanogaster histone H2B gene, but not to its flanking regions, and is surrounded by short direct repeats. The pseudogene contains several point mutations that preclude its translation. The sequence of the 3' region of this pseudogene is compatible with the hypothesis that the 3' terminal stem-loop structure of the histone H2B mRNA has served as a primer for the reverse transcription event from …
UV-induced cross-linking of proteins to plasmid pBR322 containing 8-azidoadenine 2′-deoxyribonucleotides
1988
Abstract An efficient method of cross-linking DNA to protein is described. The method is based on the incorporation of photoactive 8-azidoadenine 2′-deoxyribonucleotides into DNA. We have found that 8-N 3 dATP is a substrate for E. coli DNA polymerase I and that 8-N 3 dATP can be incorporated into plasmid pBR322 by nick-translation. Subsequently we were able to cross-link a set of different proteins to 8-azido-2′-deoxyadenosine-containing pBR322 by UV irradiation (366 nm). No DNA-protein photocross-linking was observed under the same conditions when the non-photoactive plasmid pBR322 was used.
A sequence element downstream of the yeast HTB1 gene contributes to mRNA 3' processing and cell cycle regulation.
2002
Histone mRNAs accumulate in the S phase and are rapidly degraded as cells progress into the G(2) phase of the cell cycle. In Saccharomyces cerevisiae, fusion of the 3' untranslated region and downstream sequences of the yeast histone gene HTB1 to a neomycin phosphotransferase open reading frame is sufficient to confer cell cycle regulation on the resulting chimera gene (neo-HTB1). We have identified a sequence element, designated the distal downstream element (DDE), that influences both the 3'-end cleavage site selection and the cell cycle regulation of the neo-HTB1 mRNA. Mutations in the DDE, which is located approximately 110 nucleotides downstream of the HTB1 gene, lead to a delay in the…
Epigenetic Status of an Adenovirus Type 12 Transgenome upon Long-Term Cultivation in Hamster Cells
2007
ABSTRACT The epigenetic status of integrated adenovirus type 12 (Ad12) DNA in hamster cells cultivated for about 4 decades has been investigated. Cell line TR12, a fibroblastic revertant of the Ad12-transformed epitheloid hamster cell line T637 with 15 copies of integrated Ad12 DNA, carries one Ad12 DNA copy plus a 3.9-kbp fragment from a second copy. The cellular insertion site for the Ad12 integrate, identical in both cell lines, is a >5.2-kbp inverted DNA repeat. The Ad12 transgenome is packaged around nucleosomes. The cellular junction is more sensitive to micrococcal nuclease at Ad12-occupied sites than at unoccupied sites. Bisulfite sequencing reveals complete de novo methylation i…
Wee1 inhibition potentiates Wip1-dependent p53-negative tumor cell death during chemotherapy
2016
AbstractInactivation of p53 found in more than half of human cancers is often associated with increased tumor resistance to anti-cancer therapy. We have previously shown that overexpression of the phosphatase Wip1 in p53-negative tumors sensitizes them to chemotherapeutic agents, while protecting normal tissues from the side effects of anti-cancer treatment. In this study, we decided to search for kinases that prevent Wip1-mediated sensitization of cancer cells, thereby interfering with efficacy of genotoxic anti-cancer drugs. To this end, we performed a flow cytometry-based screening in order to identify kinases that regulated the levels of γH2AX, which were used as readout. Another criter…