Search results for "Hochschild"

showing 6 items of 6 documents

The module structure of Hochschild homology in some examples

2008

Abstract In this Note we give a simple proof of a conjecture by A. Caldararu stating the compatibility between the modified Hochschild–Kostant–Rosenberg isomorphism and the action of Hochschild cohomology on Hochschild homology in the case of Calabi–Yau manifolds and smooth projective curves. To cite this article: E. Macri` et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).

AlgebraPure mathematicsConjectureHochschild homologyMathematics::K-Theory and HomologyMathematics::Quantum AlgebraModuloMathematics::Differential GeometryGeneral MedicineMathematics::Algebraic TopologyMathematics::Symplectic GeometryCohomologyMathematicsComptes Rendus Mathematique
researchProduct

Homology of pseudodifferential operators on manifolds with fibered cusps

2003

The Hochschild homology of the algebra of pseudodifferential operators on a manifold with fibered cusps, introduced by Mazzeo and Melrose, is studied and computed using the approach of Brylinski and Getzler. One of the main technical tools is a new convergence criterion for tri-filtered half-plane spectral sequences. Using trace-like functionals that generate the 0 0 -dimensional Hochschild cohomology groups, the index of a fully elliptic fibered cusp operator is expressed as the sum of a local contribution of Atiyah-Singer type and a global term on the boundary. We announce a result relating this boundary term to the adiabatic limit of the eta invariant in a particular case.

Computer Science::Machine LearningHochschild homologyApplied MathematicsGeneral MathematicsFibered knotHomology (mathematics)Computer Science::Digital LibrariesCohomologyManifoldAlgebraStatistics::Machine LearningElliptic operatorEta invariantMathematics::K-Theory and HomologySpectral sequenceComputer Science::Mathematical SoftwareMathematicsTransactions of the American Mathematical Society
researchProduct

Emosjonelt arbeid blant frontlinjeansatte : Hvordan opplever og håndterer nav-ansatte det emosjonelle arbeidet de utøver på jobb?

2017

Masteroppgave Sosiologi og sosialt arbeid ME522 - Universitetet i Agder 2017 Formålet med denne oppgaven er å få en forståelse for det emosjonelle arbeidet som frontlinjeansatte på nav utøver. Fokuset er å belyse både hvordan de opplever og hvordan de håndterer ulike situasjoner de kommer opp i. Oppgaven er basert på intervjuer og observasjoner av totalt 13 ansatte på et lokalt nav-kontor som arbeider tett med brukere innenfor ulike avdelinger. Med utgangspunkt i datamaterialet, analyseres innholdet først før det blir drøftet opp mot teori. Teoriene til Erving Goffman og Arlie Hochschild blir brukt bevisst gjennom hele oppgaven for å få frem ulike momenter ved emosjonsarbeidet og selve møte…

Hochschildemosjonelt arbeidVDP::Samfunnsvitenskap: 200::Sosialt arbeid: 360VDP::Samfunnsvitenskap: 200::Psykologi: 260::Sosial- og arbeidspsykologi: 263frontstageGoffmanbackstagefølelsesreglerNAVME522
researchProduct

Fibred-categorical obstruction theory

2022

Abstract We set up a fibred categorical theory of obstruction and classification of morphisms that specialises to the one of monoidal functors between categorical groups and also to the Schreier-Mac Lane theory of group extensions. Further applications are provided to crossed extensions and crossed bimodule butterflies, with in particular a classification of non-abelian extensions of unital associative algebras in terms of Hochschild cohomology.

Pure mathematicsFibrationCohomology Fibration Category of fractions Schreier-Mac Lane theorem Obstruction theory Crossed extension Hochschild cohomologyFibered knotMathematics::Algebraic TopologyCohomologyHochschild cohomologyMorphismMathematics::K-Theory and HomologyMathematics::Category TheoryCategorical variableMathematicsSchreier-Mac Lane theoremAlgebra and Number TheoryFunctorCategory of fractionsGroup (mathematics)Crossed extensionSettore MAT/01 - Logica MatematicaObstruction theoryCohomologyCategory of fractions; Cohomology; Crossed extension; Fibration; Hochschild cohomology; Obstruction theory; Schreier-Mac Lane theoremSettore MAT/02 - AlgebraBimoduleObstruction theory
researchProduct

Hochschild Cohomology Theories in White Noise Analysis

2008

We show that the continuous Hochschild cohomology and the differential Hochschild cohomology of the Hida test algebra endowed with the normalized Wick product are the same.

Sheaf cohomologyPure mathematicswhite noise analysisGroup cohomologyMathematics::Number TheoryFOS: Physical sciencesMathematics::Algebraic TopologyHochschild cohomologyGeneral Relativity and Quantum CosmologyCup productMathematics::K-Theory and HomologyMathematics::Quantum AlgebraMathematics - Quantum AlgebraFOS: MathematicsDe Rham cohomologyQuantum Algebra (math.QA)Equivariant cohomologyWick productČech cohomologyMathematical PhysicsMathematicslcsh:MathematicsMathematical Physics (math-ph)lcsh:QA1-939CohomologyGeometry and TopologyAnalysis
researchProduct

THE HOMOLOGY OF DIGRAPHS AS A GENERALIZATION OF HOCHSCHILD HOMOLOGY

2010

J. Przytycki has established a connection between the Hochschild homology of an algebra $A$ and the chromatic graph homology of a polygon graph with coefficients in $A$. In general the chromatic graph homology is not defined in the case where the coefficient ring is a non-commutative algebra. In this paper we define a new homology theory for directed graphs which takes coefficients in an arbitrary $A-A$ bimodule, for $A$ possibly non-commutative, which on polygons agrees with Hochschild homology through a range of dimensions.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]57M15 16E40 05C20Homology (mathematics)[ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO]Mathematics::Algebraic Topology01 natural sciencesCombinatoricsMathematics - Geometric TopologyMathematics::K-Theory and Homology[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO][ MATH.MATH-KT ] Mathematics [math]/K-Theory and Homology [math.KT]0103 physical sciencesFOS: MathematicsMathematics - CombinatoricsChromatic scale0101 mathematicsMathematics::Symplectic GeometryMathematicsAlgebra and Number TheoryHochschild homologyApplied Mathematics010102 general mathematicsGeometric Topology (math.GT)K-Theory and Homology (math.KT)Directed graphMathematics::Geometric TopologyGraphMathematics - K-Theory and HomologyPolygon[MATH.MATH-KT]Mathematics [math]/K-Theory and Homology [math.KT]BimoduleCombinatorics (math.CO)010307 mathematical physicsJournal of Algebra and Its Applications
researchProduct