Search results for "Holomorph"

showing 10 items of 111 documents

A rigidity theorem for the pair ${\cal q}{\Bbb C} P^n$ (complex hyperquadric, complex projective space)

1999

Given a compact Kahler manifold M of real dimension 2n, let P be either a compact complex hypersurface of M or a compact totally real submanifold of dimension n. Let \(\cal q\) (resp. \({\Bbb R} P^n\)) be the complex hyperquadric (resp. the totally geodesic real projective space) in the complex projective space \({\Bbb C} P^n\) of constant holomorphic sectional curvature 4\( \lambda \). We prove that if the Ricci and some (n-1)-Ricci curvatures of M (and, when P is complex, the mean absolute curvature of P) are bounded from below by some special constants and volume (P) / volume (M) \(\leq \) volume (\(\cal q\))/ volume \(({\Bbb C} P^n)\) (resp. \(\leq \) volume \(({\Bbb R} P^n)\) / volume …

Mathematics::Complex VariablesGeneral MathematicsComplex projective spaceMathematical analysisHolomorphic functionSubmanifoldCombinatoricsHypersurfaceProjective spaceMathematics::Differential GeometrySectional curvatureRicci curvatureReal projective spaceMathematicsArchiv der Mathematik
researchProduct

Entire Functions of Bounded Type on Fréchet Spaces

1993

We show that holomorphic mappings of bounded type defined on Frechet spaces extend to the bidual. The relationship between holomorphic mappings of bounded type and of uniformly bounded type is discussed and some algebraic and topological properties of the space of all entire mappings of (uniformly) bounded type are proved, for example a holomorphic version of Schauder's theorem.

Discrete mathematicsMathematics::Functional AnalysisMathematics::Complex VariablesGeneral MathematicsBounded functionUniform boundednessBounded deformationInfinite-dimensional holomorphyBounded inverse theoremIdentity theoremExponential typeBounded operatorMathematicsMathematische Nachrichten
researchProduct

Frobenius polynomials for Calabi–Yau equations

2008

We describe a variation of Dwork’ s unit-root method to determine the degree 4 Frobenius polynomial for members of a 1-modulus Calabi–Yau family over P1 in terms of the holomorphic period near a point of maximal unipotent monodromy. The method is illustrated on a couple of examples from the list [3]. For singular points, we find that the Frobenius polynomial splits in a product of two linear factors and a quadratic part 1− apT + p3T 2. We identify weight 4 modular forms which reproduce the ap as Fourier coefficients.

Pure mathematicsPolynomialAlgebra and Number TheoryModular formHolomorphic functionGeneral Physics and AstronomyUnipotentMathematics::Algebraic GeometryQuadratic equationMonodromyCalabi–Yau manifoldFourier seriesMathematical PhysicsMathematicsCommunications in Number Theory and Physics
researchProduct

An asymptotic holomorphic boundary problem on arbitrary open sets in Riemann surfaces

2020

Abstract We show that if U is an arbitrary open subset of a Riemann surface and φ an arbitrary continuous function on the boundary ∂ U , then there exists a holomorphic function φ ˜ on U such that, for every p ∈ ∂ U , φ ˜ ( x ) → φ ( p ) , as x → p outside a set of density 0 at p relative to U . These “solutions to a boundary problem” are not unique. In fact they can be required to have interpolating properties and also to assume all complex values near every boundary point. Our result is new even for the unit disc.

Numerical AnalysisPure mathematicsContinuous functionApplied MathematicsGeneral MathematicsRiemann surface010102 general mathematicsBoundary problemOpen setHolomorphic functionBoundary (topology)010103 numerical & computational mathematics01 natural sciencessymbols.namesakesymbols0101 mathematicsUnit (ring theory)AnalysisMathematicsJournal of Approximation Theory
researchProduct

Vector-Valued Hardy Spaces

2019

Given a Banach space X, we consider Hardy spaces of X-valued functions on the infinite polytorus, Hardy spaces of X-valued Dirichlet series (defined as the image of the previous ones by the Bohr transform), and Hardy spaces of X-valued holomorphic functions on l_2 ∩ B_{c0}. The chapter is dedicated to study the interplay between these spaces. It is shown that the space of functions on the polytorus always forms a subspace of the one of holomorphic functions, and these two are isometrically isomorphic if and only if X has ARNP. Then the question arises of what do we find in the side of Dirichlet series when we look at the image of the Hardy space of holomorphic functions. This is also answer…

Mathematics::Functional AnalysisPure mathematicsMathematics::Complex VariablesImage (category theory)Poisson kernelBanach spaceHolomorphic functionMathematics::Spectral TheoryHardy spaceSpace (mathematics)symbols.namesakesymbolsUniform boundednessDirichlet seriesMathematics
researchProduct

Lenses on very curved zones of a singular foliation of C2

2018

Abstract We renormalize, using suitable lenses, small domains of a singular holomorphic foliation of C 2 where the curvature is concentrated. At a proper scale, the leaves are almost translates of a graph that we will call profile. When the leaves of the foliations are levels f = λ , where f is a polynomial in 2 variables, this graph is polynomial. Finally we will indicate how our methods may be adapted to study levels of polynomials and 1-forms in C 3 .

Isolated singularity[ MATH ] Mathematics [math]Complex curvePolynomialPure mathematics010102 general mathematicsHolomorphic functionIsolated singularityCurvature01 natural sciencesComplex foliationGraphMSC: 14H20; 14B05; 53C65; 53C120103 physical sciencesFoliation (geology)Profile010307 mathematical physicsGeometry and Topology[MATH]Mathematics [math]0101 mathematicsMathematicsTopology and its Applications
researchProduct

Global 1-Forms and Vector Fields

2014

In this chapter we recall some fundamental facts concerning holomorphic 1-forms on compact surfaces: Albanese morphism, Castelnuovo–de Franchis Lemma, Bogomolov Lemma. We also discuss the logarithmic case, which is extremely useful in the study of foliations with an invariant curve. Finally we recall the classification of holomorphic vector fields on compact surfaces. All of this is very classical and can be found, for instance, in [2, Chapter IV] and 24, 35].

Pure mathematicsMathematics::Algebraic GeometryMorphismLogarithmHolomorphic functionKodaira dimensionVector fieldInvariant (mathematics)Zero divisorHirzebruch surfaceMathematics
researchProduct

Mean ergodicity of weighted composition operators on spaces of holomorphic functions

2016

[EN] Let phi be a self-map of the unit disc D of the complex plane C and let psi be a holomorphic function on D. We investigate the mean ergodicity and power boundedness of the weighted composition operator C-phi,C-psi(f) = psi(f o phi) with symbol phi and multiplier psi on the space H(D). We obtain necessary and sufficient conditions on the symbol phi and on the multiplier psi which characterize when the weighted composition operator is power bounded and (uniformly) mean ergodic. One necessary condition is that the symbol phi has a fixed point in D. If phi is not a rational rotation, the sufficient conditions are related to the modulus of the multiplier on the fixed point of phi. Some of o…

Connected spaceComposition operatorApplied Mathematics010102 general mathematicsErgodicityMathematical analysisHolomorphic functionPower bounded operatorFixed pointHolomorphic function01 natural sciences010101 applied mathematicsMultiplication operatorMean ergodic operatorBounded functionWeighted composition operator0101 mathematicsMATEMATICA APLICADAComplex planeAnalysisMathematics
researchProduct

Weakly continuous mappings on Banach spaces

1983

Abstract It is shown that every n -homogeneous continuous polynomial on a Banach space E which is weakly continuous on the unit ball of E is weakly uniformly continuous on the unit ball of E . Applications of the result to spaces of polynomials and holomorphic mappings on E are given.

Discrete mathematicsUniform continuityPure mathematicsBanach spaceInterpolation spaceUniformly convex spaceBanach manifoldInfinite-dimensional holomorphyReflexive spaceLp spaceAnalysisMathematicsJournal of Functional Analysis
researchProduct

Algebraicity of analytic maps to a hyperbolic variety

2018

Let $X$ be an algebraic variety over $\mathbb{C}$. We say that $X$ is Borel hyperbolic if, for every finite type reduced scheme $S$ over $\mathbb{C}$, every holomorphic map $S^{an}\to X^{an}$ is algebraic. We use a transcendental specialization technique to prove that $X$ is Borel hyperbolic if and only if, for every smooth affine curve $C$ over $\mathbb{C}$, every holomorphic map $C^{an}\to X^{an}$ is algebraic. We use the latter result to prove that Borel hyperbolicity shares many common features with other notions of hyperbolicity such as Kobayashi hyperbolicity.

Mathematics - Differential GeometryPure mathematicsMathematics::Dynamical SystemsGeneral Mathematics010102 general mathematicsHolomorphic functionAlgebraic varietyType (model theory)01 natural sciencesMathematics::Geometric Topology010101 applied mathematicsMathematics - Algebraic GeometryDifferential Geometry (math.DG)Scheme (mathematics)FOS: MathematicsAffine transformationTranscendental number0101 mathematicsVariety (universal algebra)Algebraic numberAlgebraic Geometry (math.AG)32Q45Mathematics
researchProduct