Search results for "Homorepeat"
showing 5 items of 5 documents
Between Interactions and Aggregates: The PolyQ Balance
2021
Abstract Polyglutamine regions (polyQ) are highly abundant consecutive runs of glutamine residues. They have been generally studied in relation to the so-called polyQ-associated diseases, characterized by protein aggregation caused by the expansion of the polyglutamine tract via a CAG-slippage mechanism. However, more than 4800 human proteins contain a polyQ, and only 9 of these regions are known to be associated with disease. Computational sequence studies and experimental structure determinations are completing a more interesting picture in which polyQ emerge as a motif for modulation of protein-protein interactions. But long polyQ regions may lead to an excess of interactions, and produc…
The importance of definitions in the study of polyQ regions: A tale of thresholds, impurities and sequence context
2020
Graphical abstract
Glutamine Codon Usage and polyQ Evolution in Primates Depend on the Q Stretch Length
2018
Abstract Amino acid usage in a proteome depends mostly on its taxonomy, as it does the codon usage in transcriptomes. Here, we explore the level of variation in the codon usage of a specific amino acid, glutamine, in relation to the number of consecutive glutamine residues. We show that CAG triplets are consistently more abundant in short glutamine homorepeats (polyQ, four to eight residues) than in shorter glutamine stretches (one to three residues), leading to the evolutionary growth of the repeat region in a CAG-dependent manner. The length of orthologous polyQ regions is mostly stable in primates, particularly the short ones. Interestingly, given a short polyQ the CAG usage is higher in…
The Role of Low Complexity Regions in Protein Interaction Modes: An Illustration in Huntingtin
2021
Low complexity regions (LCRs) are very frequent in protein sequences, generally having a lower propensity to form structured domains and tending to be much less evolutionarily conserved than globular domains. Their higher abundance in eukaryotes and in species with more cellular types agrees with a growing number of reports on their function in protein interactions regulated by post-translational modifications. LCRs facilitate the increase of regulatory and network complexity required with the emergence of organisms with more complex tissue distribution and development. Although the low conservation and structural flexibility of LCRs complicate their study, evolutionary studies of proteins …
The Conservation of Low Complexity Regions in Bacterial Proteins Depends on the Pathogenicity of the Strain and Subcellular Location of the Protein
2021
Low complexity regions (LCRs) in proteins are characterized by amino acid frequencies that differ from the average. These regions evolve faster and tend to be less conserved between homologs than globular domains. They are not common in bacteria, as compared to their prevalence in eukaryotes. Studying their conservation could help provide hypotheses about their function. To obtain the appropriate evolutionary focus for this rapidly evolving feature, here we study the conservation of LCRs in bacterial strains and compare their high variability to the closeness of the strains. For this, we selected 20 taxonomically diverse bacterial species and obtained the completely sequenced proteomes of t…