Search results for "Horizontal gene transfer"

showing 10 items of 74 documents

Scoping the effectiveness and evolutionary obstacles in using plasmid-dependent phages to fight antibiotic resistance

2016

Aim: To investigate the potential evolutionary obstacles in the sustainable therapeutic use of plasmid-dependent phages to control the clinically important conjugative plasmid-mediated dissemination of antibiotic resistance genes to pathogenic bacteria. Materials & methods: The lytic plasmid-dependent phage PRD1 and the multiresistance conferring plasmid RP4 in an Escherichia coli host were utilized to assess the genetic and phenotypic changes induced by combined phage and antibiotic selection. Results & conclusions: Resistance to PRD1 was always coupled with either completely lost or greatly reduced conjugation ability. Reversion to full conjugation efficiency was found to be rare…

0301 basic medicineMicrobiology (medical)Phage therapymedicine.medical_treatment030106 microbiologyBiologymedicine.disease_causeMicrobiologyMicrobiology03 medical and health sciencesPlasmidAntibiotic resistanceDrug Resistance BacterialEscherichia colimedicineHumansBacteriophagesEscherichia coliEscherichia coli InfectionsGeneticsBacterial conjugationPathogenic bacteriaAnti-Bacterial AgentsLytic cycleConjugation GeneticHorizontal gene transferPlasmidsFuture Microbiology
researchProduct

Microbial communities of lycaenid butterflies do not correlate with larval diet

2016

Herbivores possess many counteradaptations to plant defenses, and a growing body of research describes the role of symbiotic gut bacteria in mediating herbivorous diets among insects. However, persistent bacterial symbioses have not been found in Lepidoptera, despite the fact that perhaps 99% of the species in this order are herbivorous. We surveyed bacterial communities in the guts of larvae from 31 species of lycaenid butterflies whose caterpillars had diets ranging from obligate carnivory to strict herbivory. Contrary to our expectations, we found that the bacterial communities of carnivorous and herbivorous caterpillars do not differ in richness, diversity, or composition. Many of the o…

0301 basic medicineMicrobiology (medical)lcsh:QR1-502gut microbiomeAphytophagyMicrobiologylcsh:MicrobiologyLepidoptera genitalia03 medical and health sciencesSymbiosisPlant defense against herbivoryhorizontal gene transfer (HGT)HerbivoryOriginal ResearchHerbivoreLarvaObligatebiologyEcologyfungiLycaenidaebiology.organism_classificationLepidoptera030104 developmental biologyLycaenidaehorizontal gene transferSpecies richnessFrontiers in Microbiology
researchProduct

Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species.

2017

Horizontal gene transfer (HGT) in eukaryotic plastids and mitochondrial genomes is common, and plays an important role in organism evolution. In yeasts, recent mitochondrial HGT has been suggested between S. cerevisiae and S. paradoxus. However, few strains have been explored given the lack of accurate mitochondrial genome annotations. Mitochondrial genome sequences are important to understand how frequent these introgressions occur, and their role in cytonuclear incompatibilities and fitness. Indeed, most of the Bateson-Dobzhansky-Muller genetic incompatibilities described in yeasts are driven by cytonuclear incompatibilities. We herein explored the mitochondrial inheritance of several wor…

0301 basic medicineMitochondrial DNAParadoxusGenomeSaccharomycesHoming endonucleaseElectron Transport Complex IV03 medical and health sciencesOpen Reading FramesSaccharomycesSpecies SpecificityGeneticsMolecular BiologyGeneEcology Evolution Behavior and SystematicsPhylogenybiologyBase SequenceGeographybiology.organism_classificationReticulate evolutionMitochondria030104 developmental biologyHaplotypesEvolutionary biologyHorizontal gene transferGenome Mitochondrialbiology.proteinHybridization GeneticSaccharomyces reticulate evolution mitochondrial introgression selfish elements recombination interspecies hybridizationSequence AlignmentMolecular phylogenetics and evolution
researchProduct

Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone

2017

ABSTRACT : The global spread of Klebsiella pneumoniae producing Klebsiella pneumoniae carbapenemase (KPC) has been mainly associated with the dissemination of high-risk clones. In the last decade, hospital outbreaks involving KPC-producing K. pneumoniae have been predominantly attributed to isolates belonging to clonal group (CG) 258. However, results of recent epidemiological analysis indicate that KPC-producing sequence type (ST) 307, is emerging in different parts of the world and is a candidate to become a prevalent high-risk clone in the near future. Here we show that the ST307 genome encodes genetic features that may provide an advantage in adaptation to the hospital environment and t…

0301 basic medicineSettore MED/07 - Microbiologia E Microbiologia Clinicasiderophoreantibiotic resistancelong term survivalsequence analysisKlebsiella pneumoniaepolymerase chain reactionResponses to Human InterventionsDrug ResistanceGene TransferClone (cell biology)ST259bacterial proteinvirulence factorYersiniabactinGenomechemistry.chemical_compoundMicrobialPlasmidAntibioticsbacterial genomepathogenicitygenetics610 Medicine & healthgenome analysisCross InfectionMolecular EpidemiologyGenomeVirulencebiologydrug effectyersiniabactinBacterialDrug Resistance MicrobialGeneral MedicineKlebsiella infectionglycogen synthesisKlebsiella pneumoniaeEnglandItalyST307horizontal gene transferProteínas BacterianasResearch ArticleGene Transfer HorizontalVirulence FactorsSequence analysiscapsule030106 microbiologyVirulence610 Medicine & healthpulsed field gel electrophoresisColombiaCarbapenemase; siderophore; yersiniabactin; bacterial protein; beta lactamase; virulence factor antibiotic resistance; Article; bacterial strain; bacterial virulence; bacterium isolate; fimbria; genome analysis; glycogen synthesis; Klebsiella pneumoniae; long term survival; microbial diversity; nonhuman; plasmid; polymerase chain reaction; pulsed field gel electrophoresis; sequence analysis; whole genome sequencing; antibiotic resistance; bacterial genome; carbapenem-resistant Enterobacteriaceae; Colombia; cross infection; drug effect; England; genetic variation; genetics; horizontal gene transfer; human; Italy; Klebsiella infection; microbiology; molecular epidemiology; multilocus sequence typing; pathogenicity; virulence Bacterial Proteins; beta-Lactamases; Carbapenem-Resistant Enterobacteriaceae; Colombia; Cross Infection; Drug Resistance Microbial; England; Gene Transfer Horizontal; Genetic Variation; Genome Bacterial; Humans; Italy; Klebsiella Infections; Klebsiella pneumoniae; Molecular Epidemiology; Multilocus Sequence Typing; Virulence; Virulence Factors; Whole Genome SequencingArticlebeta-Lactamasesbeta lactamaseHorizontalMicrobiologyCarbapenemase03 medical and health sciencesAntibiotic resistanceBacterial ProteinsplasmidHumanshumanInfecciones por KlebsiellafimbrianonhumanWhole Genome Sequencingbacterial virulencebacterium isolatemicrobiologyGenetic Variationbacterial strainbiology.organism_classificationKlebsiella InfectionsEnterobacteriaceae Resistentes a los CarbapenémicosKPCCarbapenem-Resistant Enterobacteriaceae030104 developmental biologychemistrymicrobial diversityEpidemiología MolecularGenome BacterialWGSMultilocus Sequence Typing
researchProduct

Tremblaya phenacola PPER: an evolutionary beta-gammaproteobacterium collage

2017

Many insects rely on bacterial endosymbionts to obtain nutrients that are scarce in their highly specialized diets. The most surprising example corresponds to the endosymbiotic system found in mealybugs from subfamily Pseudococcinae in which two bacteria, the betaproteobacterium 'Candidatus Tremblaya princeps' and a gammaproteobacterium, maintain a nested endosymbiotic consortium. In the sister subfamily Phenacoccinae, however, a single beta-endosymbiont, 'Candidatus Tremblaya phenacola', has been described. In a previous study, we detected a trpB gene of gammaproteobacterial origin in 'Ca. Tremblaya phenacola' from two Phenacoccus species, apparently indicating an unusual case of horizonta…

0301 basic medicineSubfamilyGene Transfer HorizontalPopulationBiologyMicrobiologyGenomeHemiptera03 medical and health sciencesSymbiosisBacterial ProteinsPhylogeneticsAnimalseducationSymbiosisGeneEcology Evolution Behavior and SystematicsPhylogenySubgenomic mRNAGeneticseducation.field_of_studyBetaproteobacteriabiochemical phenomena metabolism and nutritionBiological Evolution030104 developmental biologyHorizontal gene transferOriginal ArticleGenome Bacterial
researchProduct

Et tu, Brute? Not Even Intracellular Mutualistic Symbionts Escape Horizontal Gene Transfer

2017

Many insect species maintain mutualistic relationships with endosymbiotic bacteria. In contrast to their free-living relatives, horizontal gene transfer (HGT) has traditionally been considered rare in long-term endosymbionts. Nevertheless, meta-omics exploration of certain symbiotic models has unveiled an increasing number of bacteria-bacteria and bacteria-host genetic transfers. The abundance and function of transferred loci suggest that HGT might play a major role in the evolution of the corresponding consortia, enhancing their adaptive value or buffering detrimental effects derived from the reductive evolution of endosymbionts' genomes. Here, we comprehensively review the HGT cases recor…

0301 basic medicine[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT]Adaptive valuelcsh:QH426-470transfert horizontal de gènenutritional symbiosisReviewBiologyGenome03 medical and health sciencesGeneticshorizontal gene transfer (HGT);insects;integrative evolution;intracellular bacteria;nutritional symbiosishorizontal gene transfer (HGT)insectsGenetics (clinical)Endosymbiotic bacteriaEcologyintracellular bacteriaIntracellular parasiteinsectatransformation intégrativeintegrative evolutionlcsh:Genetics030104 developmental biologyEvolutionary biologyHorizontal gene transferbactérie intracellulairesymbioseFunction (biology)Autre (Sciences du Vivant)
researchProduct

The swinholide biosynthesis gene cluster from a terrestrial cyanobacterium, Nostoc sp. strain UHCC 0450

2017

ABSTRACT Swinholides are 42-carbon ring polyketides with a 2-fold axis of symmetry. They are potent cytotoxins that disrupt the actin cytoskeleton. Swinholides were discovered from the marine sponge Theonella sp. and were long suspected to be produced by symbiotic bacteria. Misakinolide, a structural variant of swinholide, was recently demonstrated to be the product of a symbiotic heterotrophic proteobacterium. Here, we report the production of swinholide A by an axenic strain of the terrestrial cyanobacterium Nostoc sp. strain UHCC 0450. We located the 85-kb trans -AT polyketide synthase (PKS) swinholide biosynthesis gene cluster from a draft genome of Nostoc sp. UHCC 0450. The swinholide …

0301 basic medicinemarine environmentterrestrial environmentDIVERSITYcyanobacteria01 natural sciencesApplied Microbiology and BiotechnologyBiochemistryTrans-AT PKSMARINE CYANOBACTERIAGene clusterEnvironmental MicrobiologyskeletonSPONGE THEONELLA-SWINHOEISpotlightAxenicNostocgene transfertoxinSwinholide1183 Plant biology microbiology virologyPhylogenychemistry.chemical_classificationEcologybiologyAnabaena sp.ChemistryAnabaenaHorizontal gene transferKetonesbacteriumenzyme activityphylogeneticsINSIGHTSBiochemistryMultigene Familyhorizontal gene transferscytophycinScandium compoundspolyketidesBiotechnologyNostoctrans-AT PKSScytophycinNONRIBOSOMAL PEPTIDEBiosynthesisCyanobacteriaswinholideCYTOTOXIC DIMERIC MACROLIDES03 medical and health sciencesPolyketideBacterial ProteinsNonribosomal peptidecyanobacteriumPolyketide synthaseProteobacteriaCONGENERSCandidatus Entotheonellabovine spongiform encephalopathygeneNostoc sp.Bacteriacatalysis010405 organic chemistryProteinsSequence Analysis DNAbiology.organism_classificationActin cytoskeletonAnabaenaEVOLUTION"Candidatus Entotheonella"0104 chemical sciencesenzymeNATURAL-PRODUCT DISCOVERY030104 developmental biologyGenesPolyketidesbiology.proteingene expressionbacteria“Candidatus Entotheonella”Theonella sp.Marine ToxinsPolyketide SynthasesFood Sciencecatalyst
researchProduct

2020

Lsr2-like nucleoid-associated proteins play an important role as xenogeneic silencers (XS) of horizontally acquired genomic regions in actinobacteria. In this study, we systematically analyzed the in vivo constraints underlying silencing and counter-silencing of the Lsr2-like protein CgpS in Corynebacterium glutamicum Genome-wide analysis revealed binding of CgpS to regions featuring a distinct drop in GC profile close to the transcription start site (TSS) but also identified an overrepresented motif with multiple A/T steps at the nucleation site of the nucleoprotein complex. Binding of specific transcription factors (TFs) may oppose XS activity, leading to counter-silencing. Following a sy…

0303 health sciences030306 microbiologyEffectorVirulencePromoterComputational biologyBiologyMicrobiologyCorynebacterium glutamicum03 medical and health sciencesVirologyHorizontal gene transferGene silencingGeneTranscription factor030304 developmental biologymBio
researchProduct

Inferring Horizontal Gene Transfer with DarkHorse, Phylomizer, and ETE Toolkits

2020

In this chapter, we describe how to use DarkHorse2.0 to search for xenologs in the genome of the cyanobacterium Synechococcus elongatus PCC 7942. DarkHorse is an implicit phylogenetic method that uses BLAST searches to identify proteins having close homologs of unexpected taxonomic affiliation. Once a set of putative xenologs are identified, Phylomizer is used to reconstruct phylogenetic trees. Phylomizer reproduces all the necessary steps to perform a basic phylogenetic analysis. The combined use of DarkHorse and Phylomizer allows the identification of genes incorporated into a given genome by HGT.

0303 health sciencesPhylogenetic treeCombined usemacromolecular substancesComputational biologyBiologyGenome03 medical and health sciences0302 clinical medicineMolecular evolutionPhylogeneticsIdentification (biology)GeneInferring horizontal gene transfer030217 neurology & neurosurgery030304 developmental biology
researchProduct

De novo biosynthesis of simple aromatic compounds by an arthropod ( Archegozetes longisetosus )

2020

The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic …

10010106 biological sciencesEvolutionChemical defence010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular Biology03 medical and health scienceschemistry.chemical_compoundPolyketideBiosynthesisPolyketide synthaseAromatic amino acidsAnimalsOrganic ChemicalsSymbiosisArthropods030304 developmental biologyGeneral Environmental Science2. Zero hungerMites0303 health sciencesGeneral Immunology and MicrobiologybiologyChemistry70chemical ecologyFungi15General Medicine129Oribatid mitesShikimic acidbiology.organism_classificationArchegozetes longisetosusbiosynthetic pathwaysBiochemistryBenzenoidsHorizontal gene transferbiology.proteinGeneral Agricultural and Biological SciencesPolyketide SynthasesBacteriaResearch ArticleProceedings of the Royal Society B: Biological Sciences
researchProduct