Search results for "Host-Pathogen Interactions"
showing 10 items of 171 documents
Role of IFN-gamma in immune responses to Candida albicans infections
2014
Candida albicans is the most frequent etiologic agent that causes opportunistic fungal infections called candidiasis, a disease whose systemic manifestation could prove fatal and whose incidence is increasing as a result of an expanding immunocompromised population. Here we review the role of interferon-gamma (IFN-γ) in host protection against invasive candidiasis. This cytokine plays an essential role in both the innate and adaptive arms of the immune response to candidiasis. We focus on recent progress on host-pathogen interactions leading to the production of IFN-γ by host cells. IFN-γ is produced by CD4 Th1, CD8, γδ T, and natural killer (NK) cells, essentially in response to both IL-12…
The Transcription Factors TBX2 and TBX3 Interact with Human Papillomavirus 16 (HPV16) L2 and Repress the Long Control Region of HPVs
2013
ABSTRACT The minor capsid protein L2 of human papillomaviruses (HPVs) has multiple functions during the viral life cycle. Although L2 is required for effective invasion and morphogenesis, only a few cellular interaction partners are known so far. Using yeast two-hybrid screening, we identified the transcription factor TBX2 as a novel interaction partner of HPV type 16 (HPV16) L2. Coimmunoprecipitations and immunofluorescence analyses confirmed the L2-TBX2 interaction and revealed that L2 also interacts with TBX3, another member of the T-box family. Transcription of the early genes during HPV infection is under the control of an upstream enhancer and early promoter region, the long control r…
Paenibacillus larvae Chitin-Degrading Protein PlCBP49 Is a Key Virulence Factor in American Foulbrood of Honey Bees
2014
Paenibacillus larvae, the etiological agent of the globally occurring epizootic American Foulbrood (AFB) of honey bees, causes intestinal infections in honey bee larvae which develop into systemic infections inevitably leading to larval death. Massive brood mortality might eventually lead to collapse of the entire colony. Molecular mechanisms of host-microbe interactions in this system and of differences in virulence between P. larvae genotypes are poorly understood. Recently, it was demonstrated that the degradation of the peritrophic matrix lining the midgut epithelium is a key step in pathogenesis of P. larvae infections. Here, we present the isolation and identification of PlCBP49, a mo…
Introduction. Ecological immunology.
2009
12 pages; International audience; An organism's fitness is critically reliant on its immune system to provide protection against parasites and pathogens. The structure of even simple immune systems is surprisingly complex and clearly will have been moulded by the organism's ecology. The aim of this review and the theme issue is to examine the role of different ecological factors on the evolution of immunity. Here, we will provide a general framework of the field by contextualizing the main ecological factors, including interactions with parasites, other types of biotic as well as abiotic interactions, intraspecific selective constraints (life-history trade-offs, sexual selection) and popula…
Toward the Identification of Two Glycoproteins Involved in the Stomatal Deregulation of Downy Mildew–Infected Grapevine Leaves
2015
SPE Pôle IPM UB; International audience; Stomata remain abnormally opened and unresponsive to abscisic acid in grapevine leaves infected by downy mildew. This deregulation occurs from 3 days post inoculation and increases concomitantly with leaf colonization by the pathogen. Using epidermal peels, we demonstrated that the active compound involved in this deregulation is located in the apoplast. Biochemical assays showed that the active compound present in the apoplastic fluids isolated from Plasmopara viticola infected grapevine leaves (IAF) is a CysCys bridge-independent, thermostable and glycosylated protein. Fractionation guided assays based on chromatography / stomatal response and prot…
Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process
2012
International audience; Candida albicans frequently causes superficial infections by invading and damaging epithelial cells, but may also cause systemic infections by penetrating through epithelial barriers. C. albicans is a remarkable pathogen because it can invade epithelial cells via two distinct mechanisms: induced endocytosis, analogous to facultative intracellular enteropathogenic bacteria, and active penetration, similar to plant pathogenic fungi. Here we investigated the contributions of the two invasion routes of C. albicans to epithelial invasion. Using selective cellular inhibition approaches and differential fluorescence microscopy, we demonstrate that induced endocytosis contri…
Production of cecropin A in transgenic rice plants has an impact on host gene expression.
2008
Summary Expression of the cecropin A gene in rice confers resistance to the rice blast fungus Magnaporthe oryzae. In this study, a polymerase chain reaction-based suppression subtractive hybridization approach was used to generate a cDNA macroarray from the elite japonica rice (Oryza sativa L.) cultivar ‘Senia’. Gene expression studies revealed that the expression of components of the protein secretory and vesicular transport machinery is co-ordinately activated at the pre-invasive stage of infection of rice by the blast fungus. Comparisons of gene expression between wild-type and cecropin A plants revealed the over-expression of genes involved in protection against oxidative stress in tran…
Repression of Human Papillomavirus Oncogene Expression under Hypoxia Is Mediated by PI3K/mTORC2/AKT Signaling
2019
Oncogenic HPV types are major human carcinogens. Under hypoxia, HPV-positive cancer cells can repress the viral E6/E7 oncogenes and induce a reversible growth arrest. This response could contribute to therapy resistance, immune evasion, and tumor recurrence upon reoxygenation. Here, we uncover evidence that HPV oncogene repression is mediated by hypoxia-induced activation of canonical PI3K/mTORC2/AKT signaling. AKT-dependent downregulation of E6/E7 is only observed under hypoxia and occurs, at least in part, at the transcriptional level. Quantitative proteome analyses identify additional factors as candidates to be involved in AKT-dependent E6/E7 repression and/or hypoxic PI3K/mTORC2/AKT ac…
Infectious Entry Pathway of Enterovirus B Species
2015
Enterovirus B species (EV-B) are responsible for a vast number of mild and serious acute infections. They are also suspected of remaining in the body, where they cause persistent infections contributing to chronic diseases such as type I diabetes. Recent studies of the infectious entry pathway of these viruses revealed remarkable similarities, including non-clathrin entry of large endosomes originating from the plasma membrane invaginations. Many cellular factors regulating the efficient entry have recently been associated with macropinocytic uptake, such as Rac1, serine/threonine p21-activated kinase (Pak1), actin, Na/H exchanger, phospholipace C (PLC) and protein kinase Cα (PKCα). Another…
Infection success of Echinoparyphium aconiatum (Trematoda) in its snail host under high temperature: role of host resistance
2014
Background Extreme weather events such as summer heat waves become more frequent owing to global climate change and are predicted to alter disease dynamics. This is because high temperatures can reduce host immune function. Predicting the impact of climate change on host-parasite interactions is, however, difficult as temperature may also affect parasite infective stages and other host characteristics determining the outcome of interaction. Methods Two experiments were conducted to investigate these phenomena in a Lymnaea stagnalis–Echinoparyphium aconiatum (Trematoda) interaction. In the first experiment, the effects of exposure of snails to experimental heat waves [maintenance at 25°C vs.…