Search results for "Hydrodynamic"

showing 10 items of 530 documents

Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

2013

(abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic f…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesField strengthX-rays: starsAstrophysicsstars: pre-main sequence01 natural sciencesmagnetohydrodynamics (MHD)pre-main sequence X-rays: stars [accretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars]010305 fluids & plasmasSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsaccretion disksAstronomy and AstrophysicsPlasmashock wavesAccretion (astrophysics)Magnetic fieldT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceinstabilitiesPhysics::Space PhysicsOblique shockAstrophysics::Earth and Planetary Astrophysicsaccretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars: pre-main sequence X-rays: stars[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The role of Kelvin-Helmholtz instability in the internal structure of relativistic outflows. The case of the jet in 3C 273

2006

Relativistic outflows represent one of the best-suited tools to probe the physics of AGN. Numerical modelling of internal structure of the relativistic outflows on parsec scales provides important clues about the conditions and dynamics of the material in the immediate vicinity of the central black holes in AGN. We investigate possible causes of the structural patterns and regularities observed in the parsec-scale jet of the well-known quasar 3C 273. We present here the results from a 3D relativistic hydrodynamics numerical simulation based on the parameters given for the jet by Lobanov & Zensus (2001), and one in which the effects of jet precession and the injection of discrete compone…

Astrophysics::High Energy Astrophysical PhenomenaPerturbation (astronomy)FOS: Physical sciencesAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysics01 natural sciencesJets0103 physical sciencesVery-long-baseline interferometry010306 general physicsQuasars010303 astronomy & astrophysicsPhysicsSuperluminal motionQuasars ; 3C 273 ; Active galaxies ; Galaxies ; Jets ; HydrodynamicsComputer simulationAstrophysics (astro-ph)Mode (statistics)Astronomy and AstrophysicsQuasarGalaxiesViewing angle:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Wavelength13. Climate actionSpace and Planetary ScienceActive galaxiesHydrodynamics3C 273UNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

YSO accretion shocks: magnetic, chromospheric or stochastic flow effects can suppress fluctuations of X-ray emission

2013

Context. Theoretical arguments and numerical simulations of radiative shocks produced by the impact of the accreting gas onto young stars predict quasi-periodic oscillations in the emitted radiation. However, observational data do not show evidence of such periodicity. Aims. We investigate whether physically plausible perturbations in the accretion column or in the chromosphere could disrupt the shock structure influencing the observability of the oscillatory behavior. Methods. We performed local 2D magneto-hydrodynamical simulations of an accretion shock impacting a chromosphere, taking optically thin radiation losses and thermal conduction into account. We investigated the effects of seve…

Astrophysics::High Energy Astrophysical Phenomenaaccretion accretion disks magnetohydrodynamics (MHD) radiative transfer shock waves instabilitiesFOS: Physical sciencesPerturbation (astronomy)Astrophysics01 natural sciencesmagnetohydrodynamics (MHD)Settore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsaccretion disksAstronomy and AstrophysicsObservablePlasmashock wavesThermal conductionMagnetic fieldAmplitudeAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary Scienceradiative transferinstabilities[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Black-Hole Accretion Discs and Jets at Super-Eddington Luminosity

2004

Super-Eddington accretion discs with 3 and 15 dot M_E around black holes with mass 10 M_sun are examined by two-dimensional radiation hydrodynamical calculations extending from the inner disc edge to 5*10^4 r_g and lasting up to \sim 10^6 r_g/c. The dominant radiation-pressure force in the inner region of the disc accelerates the gas vertically to the disc plane, and jets with 0.2 -- 0.4$c$ are formed along the rotational axis. In the case of the lower accretion rate, the initially anisotropic high-velocity jet expands outward and becomes gradually isotropic flow in the distant region. The mass-outflow rate from the outer boundary is as large as \sim 10^{19} -- 10^{23} g s^{-1}, but it is v…

Astrophysics::High Energy Astrophysical Phenomenablack hole physicsAstrophysics (astro-ph)SS 433FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsaccretion discsthermalradiation mechanismsaccretionhydrodynamicsX-raysindividualAstrophysics::Galaxy Astrophysics
researchProduct

A new technique for observationally derived boundary conditions for space weather

2018

This research has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 647214). D.H.M. would like to thank STFC and the Leverhulme Trust for their financial support. ARY was supported by STFC consortium grant ST/N000781/1 to the universities of Dundee and Durham. Context.  In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficie…

Atmospheric Science010504 meteorology & atmospheric sciencesMHDNDASWeather forecastingFluxFOS: Physical sciencesContext (language use)Space weatherlcsh:QC851-999computer.software_genre01 natural sciencesSolar Corona0103 physical sciencesCMECoronal mass ejectionQB AstronomyAstrophysics::Solar and Stellar AstrophysicsQA MathematicsBoundary value problemQA010303 astronomy & astrophysicsR2CSolar and Stellar Astrophysics (astro-ph.SR)QB0105 earth and related environmental sciencesPhysicssolar CoronaMechanicsMagnetic fluxAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary SciencePhysics::Space Physicslcsh:Meteorology. ClimatologyMagnetohydrodynamicsBDCcomputerJournal of Space Weather and Space Climate
researchProduct

Reconstruction of the Parker spiral with the Reverse in situ data and MHD APproach - RIMAP

2021

The reconstruction of plasma parameters in the interplanetary medium is very important to understand the interplanetary propagation of solar eruptions and for Space Weather application purposes. Because only a few spacecraft are measuring in situ these parameters, reconstructions are currently performed by running complex numerical Magneto-hydrodynamic (MHD) simulations starting from remote sensing observations of the Sun. Current models apply full 3D MHD simulations of the corona or extrapolations of photospheric magnetic fields combined with semi-empirical relationships to derive the plasma parameters on a sphere centered on the Sun (inner boundary). The plasma is then propagated in the i…

Atmospheric Science010504 meteorology & atmospheric sciencesSpace weatherSolar windInterplanetary mediumSpace weatherlcsh:QC851-99901 natural sciencesHeliosphere0103 physical sciencesCoronal mass ejectionAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsModelingCoronal mass ejections; Heliosphere; Interplanetary medium; Modeling; Solar wind; Space weatherComputational physicsSolar windSpace and Planetary SciencePhysics::Space PhysicsCoronal mass ejectionslcsh:Meteorology. ClimatologyHeliospheric current sheetAstrophysics::Earth and Planetary AstrophysicsMagnetohydrodynamicsInterplanetary spaceflightHeliosphereInterplanetary medium
researchProduct

Non-thermal radiation from a pulsar wind interacting with an inhomogeneous stellar wind

2017

Binaries hosting a massive star and a non-accreting pulsar are powerful non-thermal emitters due to the interaction of the pulsar and the stellar wind. The winds of massive stars are thought to be inhomogeneous, which could have an impact on the non-thermal emission. We study numerically the impact of the presence of inhomogeneities or clumps in the stellar wind on the high-energy non-thermal radiation of high-mass binaries hosting a non-accreting pulsar. We compute the trajectories and physical properties of the streamlines in the shocked pulsar wind without clumps, with a small clump, and with a large one. This information is used to compute the synchrotron and inverse Compton emission fr…

Be starAstrophysics::High Energy Astrophysical PhenomenaPopulationEstels binarisFOS: Physical sciencesSynchrotron radiationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesRaigs gammaDouble starsPulsar0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAdiabatic processeducation010303 astronomy & astrophysicsPulsarsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studyHidrodinàmica010308 nuclear & particles physicsGamma raysAstronomy and AstrophysicsPúlsarsParticle accelerationStarsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceThermal radiationHydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaAstronomy & Astrophysics
researchProduct

Effect of a Heavy Rainstorm on the Surface Hydrodynamic Properties of a Sandy-Loam Soil

2022

Changes in surface-soil hydrodynamic properties associated with torrential natural rainstorms are largely unknown. This investigation aimed at verifying if the surface hydrodynamic properties of a sandy-loam soil varied due to the heavy rainfall event (130 mm in nearly three hours) that occurred in the summer of 2020 at Palermo (Italy) and also to establish if soil recovery processes occurred soon after the event. The soil of an orchard was sampled immediately before the rainstorm and a few days and 1.5 months later. The rainstorm determined a moderate decrease (by 1.8 times) of the saturated soil hydraulic conductivity, Ks, and an increase of its relative variability. In the subsequent wee…

Beerkan infiltration experimentsSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliEnvironmental ChemistrySandy-loam soilSurface soil hydrodynamic propertieHeavy rainstormGeneral Environmental ScienceWater Science and TechnologyCivil and Structural EngineeringJournal of Hydrologic Engineering
researchProduct

Determining short-term changes in the hydraulic properties of a sandy-loam soil by a three-run infiltration experiment

2020

Soil structure-dependent parameters can vary rapidly as a consequence of perturbing events such as intense rainfall. Investigating their short-term changes is therefore essential to understand the general behaviour of a porous medium. The aim of this study is to gain insight into the effects of wetting, perturbation and recovery processes through different sequences of Beerkan infiltration experiments performed on a sandy-loam soil. Two different three-run infiltration experiments (LHL and LLL) were carried out by pouring water at low (L, non-perturbing) and high (H, perturbing) heights above the soil surface and at short time intervals (hours, days). The results demonstrate that the propos…

Beerkan runInfiltration (hydrology)soil structure recoverymechanical disturbanceLoam0208 environmental biotechnologySettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliEnvironmental scienceSoil science02 engineering and technologysoil hydrodynamic parameter020801 environmental engineeringWater Science and TechnologyHydrological Sciences Journal
researchProduct

A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures

2016

In this short paper, we formally derive the thin spray equation for a steady Stokes gas, i.e. the equation consists in a coupling between a kinetic (Vlasov type) equation for the dispersed phase and a (steady) Stokes equation for the gas. Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard-Desvillettes-Golse-Ricci, arXiv:1608.00422 [math.AP]] where the evolution of the gas is governed by the Navier-Stokes equation.

Binary numberKinetic energy01 natural sciencesBoltzmann equationPhysics::Fluid Dynamics35Q20 35B25 82C40 76T15 76D07symbols.namesakeMathematics - Analysis of PDEshydrodynamic limitPhase (matter)FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP][PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]sprays0101 mathematicsSettore MAT/07 - Fisica MatematicaVlasov-Stokes systemPhysicsNumerical Analysisgas mixture.010102 general mathematicsMSC Primary: 35Q20 35B25; Secondary: 82C40 76T15 76D07.Stokes flowBoltzmann equationAerosol010101 applied mathematicsClassical mechanicsModeling and SimulationBoltzmann constantKinetic theory of gasessymbolsVlasov-Stokes system Boltzmann equation Hydrodynamic limit Aerosols Sprays Gas mixtureaerosolsAnalysis of PDEs (math.AP)
researchProduct