Search results for "Hydrodynamics"

showing 10 items of 390 documents

Magnetohydrodynamic study on the effect of the gravity stratification on flux rope ejections

2013

Context. Coronal mass ejections (CMEs) are the most violent phenomenon found on the Sun. One model that explains their occurrence is the flux rope ejection model. A magnetic flux rope is ejected from the solar corona and reaches the interplanetary space where it interacts with the pre-existing magnetic fields and plasma. Both gravity and the stratification of the corona affect the early evolution of the flux rope. Aims. Our aim is to study the role of gravitational stratification on the propagation of CMEs. In particular, we assess how it influences the speed and shape of CMEs and under what conditions the flux rope ejection becomes a CME or when it is quenched. Methods. We ran a set of MHD…

Sun: coronal mass ejections (CMEs) – Sun: corona – magnetohydrodynamics (MHD)PhysicsSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Solar and Stellar AstrophysicsStratification (water)Astronomy and AstrophysicsAstrophysics::Earth and Planetary AstrophysicsMagnetohydrodynamic driveMechanicsMagnetohydrodynamicsSettore FIS/06 - Fisica Per Il Sistema Terra E Il Mezzo CircumterrestreRopeProceedings of the International Astronomical Union
researchProduct

Tracing the ICME plasma with a MHD simulation

2021

The determination of the chemical composition of interplanetary coronal mass ejection (ICME) plasma is an open issue. More specifically, it is not yet fully understood how remote sensing observations of the solar corona plasma during solar disturbances evolve into plasma properties measured in situ away from the Sun. The ambient conditions of the background interplanetary plasma are important for space weather because they influence the evolutions, arrival times, and geo-effectiveness of the disturbances. The Reverse In situ and MHD APproach (RIMAP) is a technique to reconstruct the heliosphere on the ecliptic plane (including the magnetic Parker spiral) directly from in situ measurements a…

Sun: coronal mass ejections (CMEs)FOS: Physical sciencesInterplanetary mediumAstrophysicsSpace weathermagnetohydrodynamics (MHD)Physics - Space PhysicsPhysics::Plasma PhysicsAstrophysics::Solar and Stellar AstrophysicsSun: abundancesSolar and Stellar Astrophysics (astro-ph.SR)PhysicsAstronomy and AstrophysicsPlasmasolar-terrestrial relationsSpace Physics (physics.space-ph)Physics - Plasma PhysicsComputational physicsPlasma Physics (physics.plasm-ph)Solar windAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsHeliospheric current sheetMagnetohydrodynamicsInterplanetary spaceflightHeliosphere
researchProduct

A fast multi-dimensional magnetohydrodynamic formulation of the transition region adaptive conduction (TRAC) method

2021

We have demonstrated that the Transition Region Adaptive Conduction (TRAC) method permits fast and accurate numerical solutions of the field-aligned hydrodynamic equations, successfully removing the influence of numerical resolution on the coronal density response to impulsive heating. This is achieved by adjusting the parallel thermal conductivity, radiative loss, and heating rates to broaden the transition region (TR), below a global cutoff temperature, so that the steep gradients are spatially resolved even when using coarse numerical grids. Implementing the original 1D formulation of TRAC in multi-dimensional magnetohydrodynamic (MHD) models would require tracing a large number of magne…

Sun: flaresMagnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencescorona [Sun]Field lineNDASFOS: Physical scienceschromosphere [Sun]Astrophysics01 natural sciencestransition region [Sun]0103 physical sciencesRadiative transferQB AstronomyMagnetohydrodynamic driveflares hydrodynamics [Sun]Sun: transition region010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QC0105 earth and related environmental sciencescomputer.programming_languageQBPhysicsSun: coronaSun: chromosphereAstronomy and AstrophysicsTRACCoronal loopThermal conductionComputational physicsMagnetic fieldQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceHydrodynamicsMagnetohydrodynamicscomputerSettore FIS/06 - Fisica Per Il Sistema Terra E Il Mezzo Circumterrestre
researchProduct

Chromospheric evaporation and phase mixing of Alfvén waves in coronal loops

2020

Phase mixing of Alfv\'en waves has been studied extensively as a possible coronal heating mechanism but without the full thermodynamic consequences considered self-consistently. It has been argued that in some cases, the thermodynamic feedback of the heating could substantially affect the transverse density gradient and even inhibit the phase mixing process. In this paper, we use MHD simulations with the appropriate thermodynamical terms included to quantify the evaporation following heating by phase mixing of Alfv\'en waves in a coronal loop and the effect of this evaporation on the transverse density profile. The numerical simulations were performed using the Lare2D code. We set up a 2D l…

Sun: generalatmosphere [Sun]Magnetohydrodynamics (MHD)corona [Sun]010504 meteorology & atmospheric sciencesDensity gradientThermodynamic equilibriumT-NDASEvaporationAstrophysics01 natural sciencesAlfvén wave0103 physical sciencesgeneral [Sun]QB AstronomyAstrophysics::Solar and Stellar AstrophysicsSun: oscillations010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciencesPhysicsSun: coronaoscillations [Sun]Astronomy and AstrophysicsMechanicsCoronal loopDissipationTransverse planeQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsWavesMagnetohydrodynamicsBDCSun: atmosphere
researchProduct

Hydrodynamics with spin in bacterial suspensions

2016

We describe a new kind of self-propelling motion of bacteria based on the cooperative action of rotating flagella on the surface of bacteria. Describing the ensemble of rotating flagella in the framework of the hydrodynamics with spin the reciprocal theorem of Stokesian hydrodynamics is generalized accordingly. The velocity of the self-propulsion is expressed in terms of the characteristics of the vector field of flagella orientation and it is shown that unusually high velocities of \textit{Thiovulum majus} bacteria may be explained by the cooperative action of the rotating flagella. The expressions obtained enable us to estimate the torque created by the rotary motors of the bacterium and …

Surface (mathematics)HelicobacteraceaeFOS: Physical sciencesCondensed Matter - Soft Condensed MatterThiovulum majusFlagellumBacterial Physiological PhenomenaModels Biological01 natural sciencesQuantitative Biology::Cell Behavior010305 fluids & plasmasQuantitative Biology::Subcellular ProcessesSuspensionsOrientation (geometry)0103 physical sciencesTorque010306 general physicsSpin-½PhysicsPhysics::Biological Physicsbiologybiology.organism_classificationAction (physics)Classical mechanicsFlagellaHydrodynamicsSoft Condensed Matter (cond-mat.soft)Vector fieldPhysical Review E
researchProduct

A mesoscopic mechanical model of the surface tension and some simulation results

2019

Abstract Drops of mercury do not spread on a surface. A metal paper clip can float on water. These phenomena are macroscopic manifestations of molecular interactions and can be explained in terms of surface tension. In this study, we discuss a simple mesoscopic mechanical model of the surface tension and the results of numerical fluid dynamics simulations implemented on the basis of it. We study the droplet formation without and with gravity when it can drop from a narrow hole like a trickling tap and finally the behaviour of free surface liquid in a vessel. Teachers and students can be able to study the surface tension by using the computer simulation as a “tool” for analysing and discussi…

Surface tensionHistoryMesoscopic physicsMaterials scienceMechanicsFluid dynamics. Surface tension. Modelling. Simulation. Smoothed particles hydrodynamics.Computer Science ApplicationsEducationJournal of Physics: Conference Series
researchProduct

Liquid metal free surface dynamics in rotating permanent magnet stirrer

2020

Abstract We study liquid metal stirring by rotating permanent magnets in a laboratory-scale rectangular glass container. The main goal is numerical model validation using experimental free surface shape data. We find reasonable agreement between the experiments and coupled liquid metal magnetohydrodynamics simulations. Since the surface tension forces are not dominant here, free surface is deformed mainly by the dynamic pressure of the bulk flow. Therefore, we can conclude that not only the free surface profile is similar to experiments, but the bulk flow must be also very similar.

Surface tensionLiquid metalMaterials scienceFree surfaceMagnetDynamics (mechanics)Flow (psychology)Dynamic pressureMechanicsMagnetohydrodynamicsIOP Conference Series: Materials Science and Engineering
researchProduct

Computer simulations to approach surface tension by means of a simple mesoscopic mechanical model

2019

A small insect can stand or walk on water surface, drops of mercury do not spread on a solid surface, and a meniscus is formed at the free surface of a liquid contained in a thin vessel. These phenomena can be seen as macroscopic manifestations of molecular interactions and can be explained macroscopically in terms of surface tension. In this study, we deal with an approach to surface tension from a mechanical point of view, presenting a simple mesoscopic mechanical model of surface tension and the results of its implementation in numerical fluid dynamics simulations. Particularly, phenomena like droplet formation without gravity and with gravity when it can drop from a narrow hole like a t…

Surface tensionSmoothed-particle hydrodynamicsMesoscopic physicsMaterials scienceGeneral Computer ScienceSimple (abstract algebra)Settore FIS/08 - Didattica E Storia Della Fisicacomputer simulation mesoscopic model smoothed‐particle hydrodynamics surface tensionGeneral EngineeringMechanicsEducation
researchProduct

Dynamics of sediments along with their core properties in the Monastir-Bekalta coastline (Tunisia, Central Mediterranean)

2017

International audience; The authors report on two campaigns of high-resolution samplings along the shores of Monastir Bay in Tunisia: the first being a study of sediment dynamics, grain size and mineral composition in surface sediment, and the second, eight months later, using four sediment cores to study grain-size distribution in bottom sediments. Particle size analysis of superficial sediment shows that the sand in shallow depths is characterized by S-shaped curves, indicating a certain degree of agitation, possible transport by rip currents near the bottom and hyperbolic curves illustrating heterogeneity of sand stock. The sediments settle in a relatively calm environment. Along the bay…

TunisiaGeochemistryCore sediment010501 environmental sciences010502 geochemistry & geophysics01 natural sciencesCoastal sediment dynamics[ SDE ] Environmental Sciences14. Life underwaterGeomorphologySedimentary budgetRip current0105 earth and related environmental sciencesEarth-Surface ProcessesMineralsTerrigenous sedimentSedimentGeologyLongshore drift13. Climate action[SDE]Environmental SciencesHydrodynamicsSedimentary rockNortheasternSediment transportBayGeology
researchProduct

A computational framework for coating fatigue analysis of wind turbine blades due to rain erosion

2021

Author's accepted manuscript The rain-induced fatigue damage in the wind turbine blade coating has attracted increasing attention owing to significant repair and maintenance costs. The present paper develops an improved computational framework for analyzing the wind turbine blade coating fatigue induced by rain erosion. The paper first presents an extended stochastic rain field simulation model that considers different raindrop shapes (spherical, flat, and spindle), raindrop sizes, impact angles, and impact speeds. The influence of these raindrop characteristics on the impact stress of the blade coating is investigated by a smoothed particle hydrodynamics approach. To address the expensive …

Turbine blade020209 energyRain erosionSmoothed particle hydrodynamicsFatigue damage02 engineering and technologyengineering.materialRaindrop impactlaw.inventionSmoothed-particle hydrodynamicsStress (mechanics)Coatinglaw0202 electrical engineering electronic engineering information engineering0601 history and archaeology060102 archaeologyCrack propagationRenewable Energy Sustainability and the Environmentbusiness.industryFracture mechanics06 humanities and the artsStructural engineeringFatigue analysisWind turbine bladeVDP::Teknologi: 500ErosionengineeringEnvironmental sciencebusinessInterpolationRenewable Energy
researchProduct