Search results for "Hydrodynamics"

showing 10 items of 390 documents

A CUDA-based implementation of an improved SPH method on GPU

2021

We present a CUDA-based parallel implementation on GPU architecture of a modified version of the Smoothed Particle Hydrodynamics (SPH) method. This modified formulation exploits a strategy based on the Taylor series expansion, which simultaneously improves the approximation of a function and its derivatives with respect to the standard formulation. The improvement in accuracy comes at the cost of an additional computational effort. The computational demand becomes increasingly crucial as problem size increases but can be addressed by employing fast summations in a parallel computational scheme. The experimental analysis showed that our parallel implementation significantly reduces the runti…

fast gauss transformScheme (programming language)0209 industrial biotechnologyComputer scienceApplied Mathematics020206 networking & telecommunications02 engineering and technologyFunction (mathematics)Computational scienceSmoothed-particle hydrodynamicsComputational MathematicsCUDAsymbols.namesakeSettore MAT/08 - Analisi Numerica020901 industrial engineering & automationgraphic processing unit0202 electrical engineering electronic engineering information engineeringTaylor seriessymbolsSmoothed Particle Hydrodynamics Fast Gauss Transform Graphics Processing Unit.Central processing unitsmoothed particle hydorodinamicscomputercomputer.programming_language
researchProduct

High-energy monitoring of NGC 4593 II. Broad-band spectral analysis: testing the two-corona model

2019

It is widely believed that the primary X-ray emission of AGN is due to the Comptonisation of optical-UV photons from a hot electron corona, while the origin of the 'soft-excess' is still uncertain and matter of debate. A second Comptonisation component, called warm corona, was therefore proposed to account for the soft-excess, and found in agreement with the optical-UV to X-ray emission of a sample of Seyfert galaxies. In this context, we exploit the broadband XMM-Newton and NuSTAR simultaneous observations of the Seyfert galaxy NGC 4593 to further test the so called "two corona model". The NGC 4593 spectra are well reproduced by the model, from the optical/UV to the hard X-rays. Moreover, …

galaxie [X-rays]High energyPhotonAstrophysics::High Energy Astrophysical Phenomenablack hole physicsgalaxies: activeFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesmagnetohydrodynamics (MHD)Spectral lineCorona (optical phenomenon)X-rays: binariesaccretionPrimary (astronomy)Seyfert [galaxies]0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSpectral analysis010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)individuals: (NGC 4593) [X-rays][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsaccretion disks[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsAstronomy and AstrophysicGalaxygalaxies: SeyfertX-rays: galaxiesISM: jets and outflowsSpace and Planetary Science[SDU]Sciences of the Universe [physics]active [galaxies]Astrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-rays: individuals: (NGC 4593)
researchProduct

Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution

2018

We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and $Y_{X}$. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with $M_{500} > 10^{14} M_{\odot} E(z)^{-1}$, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the r…

galaxies: clusters: intracluster mediumCosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusNUMERICAL [METHODS]Ciencias FísicasFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsnumerical galaxies: clusters: general galaxies: clusters: intracluster medium X-rays: galaxies: clusters [methods]01 natural sciencesmethods: numericalLuminosity//purl.org/becyt/ford/1 [https]GALAXIES: CLUSTERS [X-RAYS]Smoothed-particle hydrodynamics0103 physical sciences010303 astronomy & astrophysicsScalingAstrophysics::Galaxy AstrophysicsGalaxy clusterPhysicsmethods: numerical galaxies: clusters: general galaxies: clusters: intracluster medium X-rays: galaxies: clustersSettore FIS/05010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsObservable//purl.org/becyt/ford/1.3 [https]RedshiftAstronomíamethods: numerical; galaxies: clusters: general; galaxies: clusters: intracluster medium; X-rays: galaxies: clusters; Astrophysics - Cosmology and Nongalactic Astrophysicsgalaxies: clusters: generalSpace and Planetary ScienceX-rays: galaxies: clustersCLUSTERS: INTRACLUSTER MEDIUM [GALAXIES]CLUSTERS: GENERAL [GALAXIES]CIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

X-ray and optical emission in protostellar jets: model predictions and comparison with observations

2007

hydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISM
researchProduct

Modeling the X-ray emission from the nearest jets: HH 154 and DG Tau

2010

hydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISM
researchProduct

X-ray Emission in protostellar jets

2005

Prompted by the recent detection of X-ray emission from Herbig-Haro objects, we studied the interaction between a supersonic jet originating from a young stellar object and the ambient medium; our aim is to investigate the mechanisms causing the X-ray emission. Our model takes into account the radiative losses from optically in plasmas and Spitzer's thermal conduction including saturation effects. We explored the parameter space defined by the density contrast between the ambient medium and the jet and by the Mach number, to infer the configurations which can give rise to X-ray emission. From the models, we derived the X-ray emission as it would be observed with Chandra/ACIS-I and XMM-Newto…

hydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISM
researchProduct

X-ray emission in protostellar jets: comparison between model predictions and observations

2007

hydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISM
researchProduct

Herbig-Haro objects: model prediction and comparison with X-ray and optical observations

2007

hydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISM
researchProduct

X-ray emission from fast moving shocks in the protostellar jet HH 154: a binding diagnostic of the emission mechanism

2004

We propose to determine the proper motion of the X-ray source associated with HH 154, the only known protostellar jet in which the X-ray emission mechanism can be studied in detail. Our numerical simulations indicate that the X-rays are produced in a fast-moving (500 km/s) post-shock region, and our HST observations show high proper motion shocked material moving at similar speed. Detection (or lack of) of proper motion of the X-ray source will strongly confirm (or falsify) our model, and constitute the basis for a general theory of X-ray emission in protostellar jets. Understanding and modeling the emission mechanism is key to assess the lifetime of the X-ray emission and thus the influenc…

hydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISM
researchProduct

Hydrodynamic simulations of the shock-cloud interaction in the Vela supernova remnant

2005

hydrodynamics SNR shocks modeling
researchProduct