Search results for "Hydroforming"
showing 10 items of 15 documents
Integration of gradient based and response surface methods to develop a cascade optimisation strategy for Y-shaped tube hydroforming process design
2010
International audience; In the last years a strong research effort was produced in order to develop and design new forming technologies able to overcome the typical drawbacks of traditional forming operations. Among such new technologies, hydroforming proved to be one of the most promising. The design of tube hydroforming operations is mainly aimed to prevent bursting or buckling occurrence and such issues can be pursued only if a proper control of both material feeding history and internal pressure path during the process is performed.In this paper, a proper optimisation strategy was developed on Y-shaped tube hydroforming process which is characterized by a quite complex process mechanics…
Innovative sheet metal forming processes: numerical simulations and experimental tests
2004
Abstract In this paper, computer aided engineering of some innovative sheet metal forming processes is reviewed. In particular, tube hydroforming processes and spinning processes are examined. Advanced numerical tools are utilized with the aim to design proper forming operations able to produce sound components. Furthermore, as far as the spinning process is concerned, experimental verifications are carried out to confirm the effectiveness of the numerical predictions.
INTERNAL PRESSURE AND COUNTERPUNCH ACTION DESIGN IN Y-SHAPED TUBE HYDROFORMING PROCESSES: A MULTI OBJECTIVE OPTIMISATION APPROACH
2009
In sheet metal forming most of the problems are multi-objective problems, generally characterised by conflicting objectives. A classical approach to investigate such kind of problems is focused on a combination of multiple objectives into a unique objective function to be optimised. Actually, in metal forming processes optimisation two main phases have to be developed in order to reach an optimal solution: the former is the modelling phase (definition of the design variables and objective function) and the latter concerns the computational aspect (numerical simulations or experiment to be developed). In this paper, an integration between numerical simulations, response surface methodology a…
Experimental validation of optimisation strategies in hydroforming of T-shaped tubes
2008
For three dimensional tube hydroforming operations (i.e. T or Y shaped tubes) the calibration of both material feeding history and internal pressure path during the process is crucial and many approaches to such optimization were presented; the authors developed some procedures to optimize pressure paths and punch velocity histories with the application of an integrated method FEM - Gradient based optimization tools. In this paper, an experimental validation campaign of the utilized optimization strategies is presented with the aim to assess the effectiveness of the developed procedures. An optimization procedure (gradient based techniques) was applied on the process parameters leading to t…
An integrated approach to the design of tube hydroforming processes: artificial intelligence, numerical analysis and experimental investigation
2004
In the last years, the growing role of process flexibility in modern mechanical industries has driven a rising interest in optimisation of process/product design through innovative techniques. Moreover, the development of niche productions, which are characterised by low production volumes and small batches leads to the need of more flexible and rapid forming technologies. In this way, a great research effort is performed towards the study of new stamping processes: among them hydro forming finds a large interest in automotive industry since it allows to significantly reduce tooling costs and also to avoid some secondary operations. Different studies are available in the technical literatur…
Sheet Metal Hydroforming Technology - State-of-the-Art
2016
The present paper describes the current status of hydroforming technology in today’s global market that focuses on energy use in respect to increasing requirements especially from the automotive industry with its renaissance after the economic crisis. A vast hydroforming classification and the restrictions and drawbacks for a wider market share are also presented.
A simple experiment to characterize material formability in tube hydroforming
2001
Abstract In tube hydroforming processes an internal fluid pressure is utilized to form the material on a properly shaped die; during the process the material axial movement is favoured by the axial feeding of an active punch. In the paper a simple experiment is presented aimed to investigate the influence of the main process variables on material formability. This equipment has enabled an extensive experimental investigation; furthermore a numerical analysis based on the finite element technique has been performed and a ductile fracture criterion has been implemented to predict the insurgence of bursting defects.
A comparison between three meta-modeling optimization approaches to design a tube hydroforming process
2012
Optimal design of tube hydroforming processes: A fuzzy-logic-based approach
2004
In recent years, tube hydroforming has become an economic and industrially suitable alternative to various traditional stamping processes, in particular for small batch production. In the present paper, an artificial intelligence system based on fuzzy logic was implemented for tube hydroforming process design. The aim was to achieve a process design procedure able to prevent forming defects and guarantee the achievement of the desired final shape of the component. In particular, the process design concerns the internal pressure history and the axial feeding. The fuzzy system is able to provide optimal trajectories for both the controlled parameters, producing a defect-free final part.
Process parameters calibration in 3D tube hydroforming processes
2007
In tube hydroforming the concurrent actions of pressurized fluid and mechanical feeding allow to obtain tube shapes characterized by complex geometries such as different diameters sections and/or bulged zones. What is crucial in such processes is the proper design of operative parameters aimed to avoid defects (for instance shape defects or ductile fractures). The main process parameters are material feeding history (i.e. the punches velocity history) and internal pressure path during the process. In more complex three dimensional processes, also the action of a counterpunch is generally useful to reduce thinning in particular in expansion zones of the tube (i.e. T or Y shaped tubes). The g…