Search results for "Hyper-heuristic"

showing 2 items of 2 documents

Adjusted bat algorithm for tuning of support vector machine parameters

2016

Support vector machines are powerful and often used technique of supervised learning applied to classification. Quality of the constructed classifier can be improved by appropriate selection of the learning parameters. These parameters are often tuned using grid search with relatively large step. This optimization process can be done computationally more efficiently and more precisely using stochastic search metaheuristics. In this paper we propose adjusted bat algorithm for support vector machines parameter optimization and show that compared to the grid search it leads to a better classifier. We tested our approach on standard set of benchmark data sets from UCI machine learning repositor…

0209 industrial biotechnologyWake-sleep algorithmActive learning (machine learning)Computer scienceStability (learning theory)Linear classifier02 engineering and technologySemi-supervised learningcomputer.software_genreCross-validationRelevance vector machineKernel (linear algebra)020901 industrial engineering & automationLeast squares support vector machine0202 electrical engineering electronic engineering information engineeringMetaheuristicBat algorithmStructured support vector machinebusiness.industrySupervised learningOnline machine learningParticle swarm optimizationPattern recognitionPerceptronGeneralization errorSupport vector machineKernel methodComputational learning theoryMargin classifierHyperparameter optimization020201 artificial intelligence & image processingData miningArtificial intelligenceHyper-heuristicbusinesscomputer2016 IEEE Congress on Evolutionary Computation (CEC)
researchProduct

Algorithmic issues in computational intelligence optimization: from design to implementation, from implementation to design

2016

The vertiginous technological growth of the last decades has generated a variety of powerful and complex systems. By embedding within modern hardware devices sophisticated software, they allow the solution of complicated tasks. As side effect, the availability of these heterogeneous technologies results into new difficult optimization problems to be faced by researchers in the field. In order to overcome the most common algorithmic issues, occurring in such a variety of possible scenarios, this research has gone through cherry-picked case-studies. A first research study moved from implementation to design considerations. Implementation limitations, such as memory constraints and real-time r…

hyper-heuristicssingle-solution algorithmsdifferentiaalievoluutiodifferential evolutionlocal searchgeneettiset algoritmitmemeettiset algoritmitevoluutiolaskentamatemaattinen optimointiheuristiikkaalgorithms local searchkoneoppiminenmemetic computingstructural biasalgoritmitcompact algorithmssingle-solution
researchProduct