Search results for "Hyperfine structure"
showing 10 items of 423 documents
Precision determination of the ground-state hyperfine splitting inBa+137using the ion-storage technique
1982
Hyperfine structure study of atomic niobium with enhanced sensitivity of Fourier transform spectroscopy
2011
In an experimental setup with a high-resolution Fourier transform (FT) spectrometer and a hollow-cathode discharge, bandpass interference filters are used to enhance the sensitivity. This extension leads to an improvement of the signal-to-noise ratio in the spectrum of atomic niobium by a factor of up to 10 compared to FT spectra measured previously without filters (see Kroger et al 2010 Astron. Astrophys. 516 A70). Several additional spectral lines with low intensity have been observed. Additionally, in some intense lines, blends become visible due to the better signal-to-noise ratio. The hyperfine structure of 51 lines recorded in the wavelength range from 415 to 670 nm is analysed or re-…
Electron-driven spin diffusion supports crossing the diffusion barrier in MAS DNP
2018
Dynamic nuclear polarization (DNP) can be applied to enhance the sensitivity of solid-state NMR experiments by several orders of magnitude due to microwave-driven transfer of spin polarization from unpaired electrons to nuclei. While the underlying quantum mechanical aspects are sufficiently well understood on a microscopic level, the exact description of the large-scale spin dynamics, usually involving hundreds to thousands of nuclear spins per electron, is still lacking consensus. Generally, it is assumed that nuclear hyperpolarization can only be observed on nuclei which do not experience strong influence of the unpaired electrons and thus being significantly removed from the paramagneti…
Alignment-orientation conversion in molecules in an external magnetic field caused by a hyperfine structure
2000
The paper presents a discussion on the problem of alignment-orientation conversion in an excited state of molecules. It is shown that a rather strong alignment-orientation conversion effect in the excited molecular state can be caused by a joint action of an external magnetic field and hyperfine interaction. The orientation thus created is transverse, i.e. perpendicular to the direction of the external magnetic field. The magnitude of this effect is analyzed as dependent on molecular parameters.
The average over a sphere
1980
Abstract The N points ri and the N segments ΔΩi of the unit sphere used in the numerical approximation of the average over the sphere are optimized to approximate the average of the set of spherical harmonics {;Yl,m;l = 0, 1, 2, …, L}; up to L = 18. The symmetry of f( r ) can be taken into acount by using only a distinct subquantity of the N point {; r i , ΔΩ i }; . Sets for N = 48n (n = 1, 2, …, 6) are tabulated. The advantage of the method is shown by the calculation of a powder Mossbauer spectrum including electric and magnetic hyperfine interactions.
Hyperfine structure constants of the CaII states 4s 2 S 1/2 and 4p 2 P 1/2, 3/2 and the nuclear quadrupole moment of43Ca
1991
The hyperfine structure splittings of the 4s 2 S 1/2 → 4p 2 P 1/2, 3/2 transitions in43CaII have been measured by fast ion beam collinear laser spectroscopy. The resonant laser interaction was observed using non-optical detection based on optical ground state depopulation pumping, state selective neutralization and charge state separated particle counting. The extracted magnetic dipole hyperfine structure constants for43CaA(2 S 1/2)=−805(2) MHz,A(2 P 1/2)=−145.5(1.0) MHz andA(2 P 3/2)=−31.9(0.2) MHz are in excellent agreement with relativistic many body perturbation theory predictions available for this alkali-like ion. The combined results are used to evaluate the semi-empirical analysis m…
Hyperfine structure of the 3d34s4p6G multiplet of atomic vanadium
2011
The spectrum of atomic vanadium was recorded using high-resolution Fourier transform spectroscopy with optical bandpass filters in the wavelength range from 360 to 500 nm. Vanadium atoms are produced and excited in a hollow-cathode discharge. The main focus lies on the determination of the magnetic dipole hyperfine constants A of the lowest multiplet of odd parity, the 6G of the configuration 3d34s4p, the hyperfine structure (HFS) of which was unknown to date. The HFS of the lines, connecting this multiplet with the multiplets 3d34s5s 6F, 3d34s4d 6H and 3d34s4d 6G, was observed and analysed. New results are presented for all six levels belonging to 3d34s4p 6G as well as for seven high-lying…
Doppler free ?dark resonances? for hyperfine measurements and isotope shifts in Ca+ isotopes in a Paul trap
1995
We have observed “dark resonances” in theA-type level structure, formed by the 4S1/2 ground state, the 4P1/2 excited state and the low lying metastable 3D3/2 state in the Calcium ion, confined in a Paul radio-frequency trap. These Doppler-free and potentially very narrow resonances were used to determine the magnetic dipole hyperfine interaction constant A for the 4P1/2 and 3D3/2 state of43Ca+, giving −142(8) MHz and −48.3(1.6) MHz, respectively. From measurements of the P-D (E1) and S-D (E2) transition wavelength in a mixture of43Ca+ and40Ca+ we determined the isotope shifts of these lines.
Possibility of measuring the amount of intergalactic metals with 14N VII HFS line
2009
AbstractWe discuss possibility of observations of the warm-hot intergalactic medium using the hyperfine structure line of highly charged nitrogen ion 14N VII (rest wavelength λ = 5.652 mm). Observations of this line will allow to separate bulk and turbulent motions in the observed target and will broaden the information about the gas ionization state, chemical and isotopic composition.Wavelength of this line is well-suited for ground-based observation of objects at z ≈ 0.15 − 0.6 when it is redshifted to the widely-used 6.5 − 9 mm spectral band, and, for example, for z ≥ 1.3, when the line can be observed in 1.3 cm band and at lower frequencies.
Hyperfine measurements in a storage ring
1995
Starting with a look at the outstanding role of the hydrogen atom in modern physics, this work reviews aspects of an extension of precision spectroscopy to the ground-state hyperfine structure of highly charged hydrogenic ions. In this connection, the preferences of heavy-ion storage rings are outlined and illuminated by the laser-spectroscopic measurement (the first of that kind) of the 1s hyperfine splitting of 209Bi82+, stored in the heavy-ion storage ring at GSI. The experimental results, including the mean lifetime of the upper 1s substate, are compared with the presently available theoretical calculations. The relevance of studying further hydrogenicc ions in the vicinity of the doubl…