Search results for "ICESat"

showing 3 items of 3 documents

PHYSICS-based retrieval of scattering albedo and vegetation optical depth using multi-sensor data integration

2017

Vegetation optical depth and scattering albedo are crucial parameters within the widely used τ-ω model for passive microwave remote sensing of vegetation and soil. A multi-sensor data integration approach using ICESat lidar vegetation heights and SMAP radar as well as radiometer data enables a direct retrieval of the two parameters on a physics-derived basis. The crucial step within the retrieval methodology is the calculus of the vegetation scattering coefficient KS, where one exact and three approximated solutions are provided. It is shown that, when using the assumption of a randomly oriented volume, the backscatter measurements of the radar provide a sufficient first order estimate and …

010504 meteorology & atmospheric sciencesScattering albedo0208 environmental biotechnologyradiometry02 engineering and technologyretrieval methodologycomputer.software_genre01 natural scienceslaw.inventionlawremote sensing by radarRadaractive-passive microwavesPhysics::Atmospheric and Oceanic PhysicsIndexespassive microwave remote sensingRemote sensingremote sensing by laser beamGeographyLidaroptical radarcrucial parametersmedicine.symptomvegetation scattering coefficientData integrationBackscattervegetation mappingta1171τ-ω modelsoilPhysics::GeophysicsICESat lidar vegetation heightsvegetationmedicineVegetation optical depthbackscatter0105 earth and related environmental sciencesRemote sensingsensor fusionRadiometerScatteringnovel multisensor approachSMAPAlbedoMulti-sensor020801 environmental engineeringradiometer dataVegetation (pathology)multisensor data integration approachcomputerICESatalbedo
researchProduct

Estimation of vegetation loss coefficients and canopy penetration depths from SMAP radiometer and IceSAT lidar data

2017

In this study the framework of the τ — ω model is used to derive vegetation loss coefficients and canopy penetration depths from SMAP multi-temporal retrievals of vegetation optical depth, single scattering albedo and ICESat lidar vegetation heights. The vegetation loss coefficients serve as a global indicator of how strong absorption and scattering processes attenuate L-band microwave radiation. By inverting the vegetation loss coefficients, penetration depths into the canopy can be obtained, which are displayed for the global forest reservoirs. A simple penetration index is formed combining vegetation heights and penetration depth estimates. The distribution and level of this index reveal…

Canopyloss coefficientsLidarRadiometer010504 meteorology & atmospheric sciencesSingle-scattering albedoAttenuation0208 environmental biotechnologyFOS: Physical sciences02 engineering and technologyPenetration (firestop)SMAP15. Life on land01 natural sciences020801 environmental engineeringPhysics - Atmospheric and Oceanic PhysicsLidarGeographyPenetration depthAtmospheric and Oceanic Physics (physics.ao-ph)Penetration depthWater contentICESat0105 earth and related environmental sciencesRemote sensing
researchProduct

Time-variations of zeroth-order vegetation absorption and scattering at L-band

2021

Abstract Surface soil moisture and vegetation optical depth (VOD), as an indicator of vegetation wet biomass, from passive microwave remote sensing have been increasingly applied in global ecology and climate research. Both soil moisture and VOD are retrieved from satellite brightness temperature measurements assuming a zeroth order radiative transfer model, commonly known as the tau-omega model. In this model the emission of a vegetated surface is dependent on soil moisture, vegetation absorption and vegetation scattering. Vegetation scattering is normally represented by the single scattering albedo, ω, and is commonly assumed to be a time-invariant calibration parameter to achieve high ac…

LidarScatteringSingle-scattering albedoAttenuationeffective scattering albedoSoil ScienceGeologySoil scienceContext (language use)SMAPradiometryVegetationvegetation optical depthICESat-2L-bandAtmospheric radiative transfer codesBrightness temperaturerelative canopy scatteringEnvironmental scienceComputers in Earth SciencesAbsorption (electromagnetic radiation)relative canopy absorptionRemote sensingRemote Sensing of Environment
researchProduct