Search results for "IFMIF"
showing 10 items of 22 documents
Design, manufacturing and testing of a fast disconnecting system for the European target assembly concept of IFMIF
2013
The International Fusion Materials Irradiation Facility (IFMIF) will be equipped with a lithium target assembly to produce the required neutron flux for the irradiation of candidate fusion materials up to a damage rate of 100 dpa (cumulated damage in five years). The present European target assembly design is based on the so called replaceable backplate bayonet concept that was developed with the objective to simplify the maintenance operations for its refurbishment/replacement and to reduce the material for disposal as well. To this purpose it was also conceived to be attached to the lithium pipes and to the beam line by means of remotely operated connections based on clamped flanges with …
Engineering design and steady state thermomechanical analysis of the IFMIF European lithium target system
2013
In the framework of the current IFMIF Engineering Validation and Engineering Design Activities (IFMIF/EVEDA) phase, ENEA is responsible for the design of the European concept of the IFMIF lithium target system which foresees the possibility to periodically replace only the most irradiated and thus critical component (i.e., the backplate) while continuing to operate the rest of the target for a longer period (bayonet backplate concept). In this work, the results of the steady state thermomechanical analysis of the IFMIF EU target assembly are briefly reported highlighting the relevant indications obtained with respect to the fulfillment of the design requirements. © 2013 IEEE.
Thermo-mechanical analysis of irradiation swelling and design optimization of the IFMIF target assembly with bayonet backplate
2017
Abstract The availability of a high flux neutron source for testing candidate materials under irradiation conditions, which will be typically encountered in future fusion power reactors (ITER, DEMO, FPR), is a fundamental step towards the development of fusion energy. To this purpose, the International Fusion Materials Irradiation Facility (IFMIF) represents the reference option to provide the fusion community with a DEMO-relevant neutron source capable of irradiating samples at a damage rate of up to 20 dpa/fpy (in steel) in a volume of 0.5 l. In the framework of the engineering design activities of IFMIF, ENEA is committed in the design of the lithium target assembly (TA) with removable (…
On the thermo-mechanical behaviour of the IFMIF target assembly under steady state and transient operative scenarios
Analysis of the thermo-mechanical behaviour of IFMIF target assembly integrated with its support framework
2014
On the computational assessment of the IFMIF-EVEDA Target Assembly thermal behaviour
2011
Start-up and shutdown thermomechanical transient analyses of the IFMIF European lithium target system
2014
In the framework of the current IFMIF Engineering Validation and Engineering Design Activities (IFMIF/EVEDA) phase, ENEA is responsible for the design of the European concept of the IFMIF lithium target system which foresees the possibility to periodically replace only the most irradiated and thus critical component (i.e., the backplate) while continuing to operate the rest of the target for a longer period (bayonet backplate concept). With the objective of evaluating the performances of the system in terms of temperature, stress and displacement fields evolution during start-up and shutdown phases, an uncoupled thermomechanical transient analysis has been performed in close collaboration w…
The European contribution to the development and validation activities for the design of IFMIF lithium facility
2013
The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-driven intense neutron source where candidate materials for fusion reactors will be tested and validated. The high energy neutron flux is produced by means of two deuteron beams (total current of 250 mA, energy of 40 MeV) that strikes a liquid lithium target circulating in a lithium loop of IFMIF plant. The European (EU) contribution to the development of the lithium facility comprises five procurement packages, as follow: (1) participation to the experimental activities of the EVEDA lithium test loop in Oarai (Japan); (2) study aimed at evaluating the corrosion and erosion phenomena, promoted by lithium, for …