Search results for "IFS"

showing 10 items of 372 documents

Identification of an optimized 2′-O-methylated trinucleotide RNA motif inhibiting Toll-like receptors 7 and 8

2017

Bacterial RNA serves an important function as activator of the innate immune system. In humans bacterial RNA is sensed by the endosomal receptors TLR7 and TLR8. Differences in the posttranscriptional modification profile of prokaryotic when compared with eukaryotic RNA allow innate immune cells to discriminate between “host” and “foreign” RNA. Ribose 2′-O-methylation is of particular importance and has been reported to antagonize TLR7/8 activation. Yet, the exact sequence context in which 2′-O-methylation has to occur to mediate its inhibitory activity remains largely undefined. On the basis of a naturally occurring 2′-O-methylated RNA sequence, we performed a systematic permutation of the …

0301 basic medicineCytidineBiologyBioinformaticsMethylationInhibitory Concentration 5003 medical and health scienceschemistry.chemical_compound0302 clinical medicineRNA TransferReportRiboseHumansNucleotideNucleotide MotifsMolecular Biologychemistry.chemical_classificationInnate immune systemNucleotides2'-O-methylationRNATLR7TLR8Cell biologyRNA Bacterial030104 developmental biologyToll-Like Receptor 7chemistryToll-Like Receptor 8MutationLeukocytes MononuclearNucleic acidRNA030215 immunologyRNA
researchProduct

Adaptation of gene loci to heterochromatin in the course of Drosophila evolution is associated with insulator proteins.

2020

AbstractPericentromeric heterochromatin is generally composed of repetitive DNA forming a transcriptionally repressive environment. Dozens of genes were embedded into pericentromeric heterochromatin during evolution of Drosophilidae lineage while retaining activity. However, factors that contribute to insusceptibility of gene loci to transcriptional silencing remain unknown. Here, we find that the promoter region of genes that can be embedded in both euchromatin and heterochromatin exhibits a conserved structure throughout the Drosophila phylogeny and carries motifs for binding of certain chromatin remodeling factors, including insulator proteins. Using ChIP-seq data, we demonstrate that ev…

0301 basic medicineEuchromatinHeterochromatinEvolutionMolecular biologyAdaptation Biologicallcsh:MedicineInsulator (genetics)Chromatin remodelingArticleEvolutionary geneticsEvolution Molecular03 medical and health sciences0302 clinical medicineDrosophilidaeHeterochromatinAnimalsDrosophila ProteinsNucleotide Motifslcsh:ScienceEye ProteinsPromoter Regions GeneticGenePericentric heterochromatinPhylogenyGeneticsMultidisciplinarygeenitBinding Sitesbiologylcsh:RfungiChromosome MappingPromoterDNAbiology.organism_classificationChromatinDNA-Binding Proteins030104 developmental biologyGene Expression RegulationGenetic LociChromatin Immunoprecipitation SequencingMolecular evolutionlcsh:QDrosophilaTranscription Initiation SiteTranscription030217 neurology & neurosurgeryProtein BindingScientific reports
researchProduct

Q-nexus: a comprehensive and efficient analysis pipeline designed for ChIP-nexus

2016

Background: ChIP-nexus, an extension of the ChIP-exo protocol, can be used to map the borders of protein-bound DNA sequences at nucleotide resolution, requires less input DNA and enables selective PCR duplicate removal using random barcodes. However, the use of random barcodes requires additional preprocessing of the mapping data, which complicates the computational analysis. To date, only a very limited number of software packages are available for the analysis of ChIP-exo data, which have not yet been systematically tested and compared on ChIP-nexus data. Results: Here, we present a comprehensive software package for ChIP-nexus data that exploits the random barcodes for selective removal …

0301 basic medicineFOS: Computer and information sciencesDuplication ratesChromatin ImmunoprecipitationBioinformaticsPipeline (computing)610Biologycomputer.software_genre600 Technik Medizin angewandte Wissenschaften::610 Medizin und Gesundheit03 medical and health sciencesSoftwareChIP-nexusGeneticsPreprocessorNucleotide MotifsLibrary complexityChIP-exoGeneticsProtocol (science)Binding Sitesbusiness.industryfungiComputational BiologyHigh-Throughput Nucleotide SequencingReproducibility of ResultsChipChromatin immunoprecipitationData mappingDNA-Binding ProteinsAlgorithm030104 developmental biologyChIP-exoData miningbusinessPeak callingcomputerAlgorithmsSoftwareProtein BindingTranscription FactorsResearch ArticleBiotechnologyBMC Genomics
researchProduct

Evolutionary conserved role of eukaryotic translation factor eIF5A in the regulation of actin-nucleating formins

2017

AbstractElongation factor eIF5A is required for the translation of consecutive prolines, and was shown in yeast to translate polyproline-containing Bni1, an actin-nucleating formin required for polarized growth during mating. Here we show that Drosophila eIF5A can functionally replace yeast eIF5A and is required for actin-rich cable assembly during embryonic dorsal closure (DC). Furthermore, Diaphanous, the formin involved in actin dynamics during DC, is regulated by and mediates eIF5A effects. Finally, eIF5A controls cell migration and regulates Diaphanous levels also in mammalian cells. Our results uncover an evolutionary conserved role of eIF5A regulating cytoskeleton-dependent processes…

0301 basic medicineFluorescent Antibody Techniquelcsh:Medicinemacromolecular substancesBiologyArticleMiceEukaryotic cells03 medical and health sciencesEukaryotic translationCell MovementPeptide Initiation FactorsCitosqueletProtein biosynthesisAnimalsProtein Interaction Domains and Motifslcsh:ScienceCytoskeletonActinMultidisciplinaryCèl·lules eucariotesMicrofilament Proteinsfungilcsh:RGene Expression Regulation DevelopmentalRNA-Binding ProteinsTranslation (biology)Biological EvolutionActinsDorsal closureCell biologyElongation factor030104 developmental biologyProtein BiosynthesisForminsMutationbiology.proteinDrosophilalcsh:QEIF5AScientific Reports
researchProduct

The malate sensing two-component system MaeKR is a non-canonical class of sensory complex for C4-dicarboxylates

2017

16 páginas, 7 figuras, 2 tablas

0301 basic medicineModels MolecularAdenosine Triphosphate / metabolismProtein ConformationScienceMalatesBacterial proteins/chemistry/metabolism/geneticsPlasma protein bindingBiologyModels BiologicalArticleConserved sequence03 medical and health sciencesAdenosine TriphosphateBacterial ProteinsAdenosine Triphosphate / chemistryDicarboxylic AcidsProtein Interaction Domains and MotifsAmino Acid SequenceKinase activityPhosphorylationLactobacilus cassei/classification/physiologyMalates/metabolismPromoter Regions GeneticConserved SequencePhylogenyMultidisciplinaryQAutophosphorylationfungiRTwo-component regulatory systemResponse regulatorLacticaseibacillus casei030104 developmental biologyBiochemistryMedicineModelsbiologica/moleculPhosphorylationCconserved secuenceProtein MultimerizationBinding domainProtein BindingScientific Reports
researchProduct

Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: Inference on structural aspects

2018

AbstractVip3 vegetative insecticidal proteins from Bacillus thuringiensis are an important tool for crop protection against caterpillar pests in IPM strategies. While there is wide consensus on their general mode of action, the details of their mode of action are not completely elucidated and their structure remains unknown. In this work the alanine scanning technique was performed on 558 out of the total of 788 amino acids of the Vip3Af1 protein. From the 558 residue substitutions, 19 impaired protein expression and other 19 substitutions severely compromised the insecticidal activity against Spodoptera frugiperda. The latter 19 substitutions mainly clustered in two regions of the protein …

0301 basic medicineModels MolecularAmino Acid MotifsBacillus thuringiensislcsh:MedicineSpodopteraSpodopteraArticle03 medical and health sciencesProtein structureProtein sequencingBacterial ProteinsBacillus thuringiensisAnimalsMode of actionlcsh:Sciencechemistry.chemical_classificationMultidisciplinaryAlaninebiologyProtein Stabilitylcsh:RAlanine scanningbiology.organism_classificationProtein tertiary structureAmino acidProtein Structure TertiaryMolecular Docking Simulation030104 developmental biologychemistryBiochemistryAmino Acid Substitutionlcsh:QScientific Reports
researchProduct

Functional display of an alpha2 integrin-specific motif (RKK) on the surface of baculovirus particles.

2005

The use of baculovirus vectors shows promise as a tool for gene delivery into mammalian cells. These insect viruses have been shown to transduce a variety of mammalian cell lines, and gene transfer has also been demonstrated in vivo. In this study, we generated two recombinant baculovirus vectors displaying an integrin-specific motif, RKK, as a part of two different loops of the green fluorescent protein (GFP) fused with the major envelope protein gp64 of Autographa californica M nucleopolyhedrovirus. By enzyme linked immunosorbent assays, these viruses were shown to bind a peptide representing the receptor binding site of an α2 integrin, the α2I-domain. However, the interaction was not st…

0301 basic medicineModels MolecularCancer ResearchInsectavirusesmedia_common.quotation_subjectAmino Acid MotifsGreen Fluorescent ProteinsIntegrin alpha2PeptideEnzyme-Linked Immunosorbent AssayCHO CellsBiologyGene deliveryGreen fluorescent proteinCell Line03 medical and health sciences0302 clinical medicineCricetinaeAnimalsCloning MolecularInternalizationmedia_commonchemistry.chemical_classificationMicroscopy ConfocalPhospholipase CWild typeGene Transfer Techniquesbiology.organism_classificationFlow CytometryMolecular biologyRecombinant ProteinsProtein Structure TertiaryAutographa californica030104 developmental biologyEnzymeOncologychemistryMicroscopy FluorescenceMutagenesis030220 oncology & carcinogenesisType C PhospholipasesElectrophoresis Polyacrylamide GelPeptidesBaculoviridaeViral Fusion ProteinsPlasmidsProtein BindingTechnology in cancer researchtreatment
researchProduct

Sensory domain contraction in histidine kinase CitA triggers transmembrane signaling in the membrane-bound sensor

2017

Bacteria use membrane-integral sensor histidine kinases (HK) to perceive stimuli and transduce signals from the environment to the cytosol. Information on how the signal is transmitted across the membrane by HKs is still scarce. Combining both liquid- and solid-state NMR, we demonstrate that structural rearrangements in the extracytoplasmic, citrate-sensing Per-Arnt-Sim (PAS) domain of HK CitA are identical for the isolated domain in solution and in a longer construct containing the membrane-embedded HK and lacking only the kinase core. We show that upon citrate binding, the PAS domain contracts, resulting in a shortening of the C-terminal β-strand. We demonstrate that this contraction of t…

0301 basic medicineModels MolecularHistidine Kinase030106 microbiologyMolecular ConformationCitric Acid03 medical and health sciencesStructure-Activity RelationshipBacterial ProteinsPAS domainProtein Interaction Domains and MotifsAmino Acid SequenceHistidineMultidisciplinaryChemistryKinaseHistidine kinaseGeobacillusMembrane ProteinsBiological SciencesTransmembrane proteinCell biologyCytosolHelixSignal transductionProtein BindingSignal Transduction
researchProduct

rbFOX1/MBNL1 competition for CCUG RNA repeats binding contributes to myotonic dystrophy type 1/type 2 differences

2018

Myotonic dystrophy type 1 and type 2 (DM1, DM2) are caused by expansions of CTG and CCTG repeats, respectively. RNAs containing expanded CUG or CCUG repeats interfere with the metabolism of other RNAs through titration of the Muscleblind-like (MBNL) RNA binding proteins. DM2 follows a more favorable clinical course than DM1, suggesting that specific modifiers may modulate DM severity. Here, we report that the rbFOX1 RNA binding protein binds to expanded CCUG RNA repeats, but not to expanded CUG RNA repeats. Interestingly, rbFOX1 competes with MBNL1 for binding to CCUG expanded repeats and overexpression of rbFOX1 partly releases MBNL1 from sequestration within CCUG RNA foci in DM2 muscle ce…

0301 basic medicineModels MolecularProtein Conformation alpha-Helical[SDV]Life Sciences [q-bio]General Physics and AstronomyGene ExpressionRNA-binding proteinCrystallography X-Raychemistry.chemical_compoundMOLECULAR-BASISGene expressionMBNL1Myotonic DystrophyComputingMilieux_MISCELLANEOUSMultidisciplinaryCHLORIDE CHANNELQRNA-Binding ProteinsRecombinant Proteins3. Good healthCell biologyCONGENITAL HEART-DISEASEDrosophila melanogasterThermodynamicsSKELETAL-MUSCLERNA Splicing FactorsCUG REPEATSProtein BindingRNA Splicing Factorsmusculoskeletal diseasesSTEADY-STATEcongenital hereditary and neonatal diseases and abnormalitiesScienceRBFOX1BiologyMyotonic dystrophyBinding CompetitiveGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesmedicineEscherichia coliAnimalsHumansProtein Interaction Domains and MotifsBinding siteNucleotide MotifsMuscle SkeletalSPLICING REGULATOR RBFOX2MUSCLEBLIND PROTEINSBinding SitesPRE-MESSENGER-RNARNAGeneral Chemistrymedicine.diseaseDisease Models AnimalKinetics030104 developmental biologychemistryTRIPLET REPEATRNAProtein Conformation beta-Strand3111 Biomedicine
researchProduct

eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences

2017

Abstract eIF5A is an essential protein involved in protein synthesis, cell proliferation and animal development. High eIF5A expression is observed in many tumor types and has been linked to cancer metastasis. Recent studies have shown that eIF5A facilitates the translation elongation of stretches of consecutive prolines. Activated eIF5A binds to the empty E-site of stalled ribosomes, where it is thought to interact with the peptidyl-tRNA situated at the P-site. Here, we report a genome-wide analysis of ribosome stalling in Saccharomyces cerevisiae eIF5A depleted cells using 5Pseq. We confirm that, in the absence of eIF5A, ribosomes stall at proline stretches, and extend previous studies by …

0301 basic medicinePeptidyl transferaseProlineCytoskeleton organizationAmino Acid MotifsSaccharomyces cerevisiaePeptide Chain Elongation TranslationalSaccharomyces cerevisiaeBioinformaticsRibosomeGTP Phosphohydrolases03 medical and health sciences0302 clinical medicinePeptide Initiation FactorsGene Expression Regulation FungalGeneticsProtein biosynthesisHumansMolecular BiologyPolyproline helixBinding SitesbiologyRNA-Binding Proteinsbiology.organism_classificationStop codonCell biology030104 developmental biologybiology.proteinGenome FungalHydrophobic and Hydrophilic InteractionsRibosomesEIF5A030217 neurology & neurosurgeryProtein BindingNucleic Acids Research
researchProduct