Search results for "IMPLEMENTATION"
showing 10 items of 345 documents
Objectives and methodology: Guidelines of the Italian Society for Haemostasis and Thrombosis (SISET).
2009
A current goal of the Italian Society for Thrombosis and Haemostasis (SISET) is the production of guidelines for clinical conditions related to haemostasis and thrombosis. In 2006, the Executive Committee of SISET adopted a new program for the production of methodologically and scientifically sound guidelines aimed at both addressing clinical practice and stimulating new research. The first major step for this program was to train methodologists to manage working groups that compose the guidelines, and to create a reference document that describes the development of the program. The aim of the present paper is to report a short version of this methodological document, for those who wish to …
<p>Preoperative Anemia and Iron Deficiency Screening, Evaluation and Management: Barrier Identification and Implementation Strategy Mapping<…
2020
Introduction and aims: Patients undergoing major surgery risk significant blood loss and transfusion, which increases substantially if they have pre-existing anemia. Preoperative Anemia and Iron Deficiency Screening, Evaluation and Management Pathways (PAIDSEM-P) outline recommended blood tests and treatment to optimize patients before surgery. Documented success using PAIDSEM-P to reduce transfusions and improve patient outcomes exists, but the reporting quality of such studies is suboptimal. It remains unclear what implementation strategies best support the implementation of PAIDSEM-P. Method: Maximum variation, purposive sampling was used to recruit a total of 15 partici-pants, including…
The implementation of mindfulness in healthcare Systems: a theoretical analysis
2014
Abstract Objective Evidence regarding the efficacy of mindfulness-based interventions (MBIs) is increasing exponentially; however, there are still challenges to their integration in healthcare systems. Our goal is to provide a conceptual framework that addresses these challenges in order to bring about scholarly dialog and support health managers and practitioners with the implementation of MBIs in healthcare. Method This is an opinative narrative review based on theoretical and empirical data that address key issues in the implementation of mindfulness in healthcare systems, such as the training of professionals, funding and costs of interventions, cost effectiveness and innovative deliver…
Geometric Calculus Applications to Medical Imaging: Status and Perspectives
2021
Medical imaging data coming from different acquisition modalities requires automatic tools to extract useful information and support clinicians in the formulation of accurate diagnoses. Geometric Calculus (GC) offers a powerful mathematical and computational model for the development of effective medical imaging algorithms. The practical use of GC-based methods in medical imaging requires fast and efficient implementations to meet real-time processing constraints as well as accuracy and robustness requirements. The purpose of this article is to present the state of the art of the GC-based techniques for medical image analysis and processing. The use of GC-based paradigms in Radiomics and De…
Modelling Photoionisation in Isocytosine: Potential Formation of Longer‐Lived Excited State Cations in its Keto Form
2021
Abstract Studying the effects of UV and VUV radiation on non‐canonical DNA/RNA nucleobases allows us to compare how they release excess energy following absorption with respect to their canonical counterparts. This has attracted much research attention in recent years because of its likely influence on the origin of our genetic lexicon in prebiotic times. Here we present a CASSCF and XMS‐CASPT2 theoretical study of the photoionisation of non‐canonical pyrimidine nucleobase isocytosine in both its keto and enol tautomeric forms. We analyse their lowest energy cationic excited states including 2π+ , 2nO+ and 2nN+ and compare these to the corresponding electronic states in cytosine. Investigat…
Multiscale simulations of protein landscapes: Using coarse-grained models as reference potentials to full explicit models
2010
Evaluating the free-energy landscape of proteins and the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of simplified coarse-grained (CG) folding models offers an effective way of sampling the landscape but such a treatment, however, may not give the correct description of the effect of the actual protein residues. A general way around this problem that has been put forward in our early work (Fan et al., Theor Chem Acc 1999;103:77-80) uses the CG model as a reference potential for free-energy calculations of diffe…
One-dimensional hydrodynamic modeling of coronal plasmas on transputer arrays
1990
Abstract We describe a concurrent implementation of the Palermo-Harvard hydrodynamic code on cost-effective and modularity expandable transputer arrays. We have tested the effectiveness of our approach by simulating an already well-studied compact solar-flare model on different transputer configurations and compared their performances with those of other machines. We have found that the speed of the concurrent program on a 16-T800 transputers array is ~1/9 of that of the equivalent code optimized for a CRAY X-MP/48. This work clearly shows that transputer-based arrays provide locally available high computing-power tools to extend the investigation of compact solar flares and similar astroph…
The Acts project: track reconstruction software for HL-LHC and beyond
2019
The reconstruction of trajectories of the charged particles in the tracking detectors of high energy physics experiments is one of the most difficult and complex tasks of event reconstruction at particle colliders. As pattern recognition algorithms exhibit combinatorial scaling to high track multiplicities, they become the largest contributor to the CPU consumption within event reconstruction, particularly at current and future hadron colliders such as the LHC, HL-LHC and FCC-hh. Current algorithms provide an extremely high standard of physics and computing performance and have been tested on billions of simulated and recorded data events. However, most algorithms were first written 20 year…
Multiple modular very long instruction word processors based on field programmable gate arrays
2007
Modern field programmable gate array (FPGA) chips, with their large memory capacity and reconfigurability potential, are opening new frontiers in rapid prototyping of embedded systems. With the advent of high-density FPGAs, it is now possible to implement a high-performance very long instruction word (VLIW) processor core in an FPGA. This paper describes research results about enabling the DSP TMS320 C6201 model for real-time image processing applications by exploiting FPGA technology. We present a modular DSP C6201 VHDL model with a variable instruction set. We call this new development a minimum mandatory modules (M3) approach. Our goals are to keep the flexibility of DSP in order to shor…
Experimental Study of Six Different Implementations of Parallel Matrix Multiplication on Heterogeneous Computational Clusters of Multicore Processors
2010
Two strategies of distribution of computations can be used to implement parallel solvers for dense linear algebra problems for Heterogeneous Computational Clusters of Multicore Processors (HCoMs). These strategies are called Heterogeneous Process Distribution Strategy (HPS) and Heterogeneous Data Distribution Strategy (HDS). They are not novel and have been researched thoroughly. However, the advent of multicores necessitates enhancements to them. In this paper, we present these enhancements. Our study is based on experiments using six applications to perform Parallel Matrix-matrix Multiplication (PMM) on an HCoM employing the two distribution strategies.