Search results for "INSULATOR"
showing 10 items of 228 documents
Catalyst-free vapour-solid technique for deposition of Bi2Te3 and Bi2Se3 nanowires/nanobelts with topological insulator properties.
2015
We present a simple two-stage vapour–solid synthesis method for the growth of bismuth chalcogenide (Bi2Te3, Bi2Se3) topological insulator nanowires/nanobelts by using Bi2Se3 or Bi2Te3 powders as source materials. During the first stage of the synthesis process nanoplateteles, serving as “catalysts” for further nanowire/nanobelt growth, are formed. At a second stage of the synthesis, the introduction of a N2 flow at 35 Torr pressure in the chamber induces the formation of free standing nanowires/nanobelts. The synthesised nanostructures demonstrate a layered single-crystalline structure and Bi : Se and Bi : Te ratios 40 : 60 at% for both Bi2Se3 and Bi2Te3 nanowires/nanobelts. The presence of…
Normal metal - insulator - superconductor interferometer
2003
Hybrid normal metal - insulator - superconductor microstructures suitable for studying an interference of electrons were fabricated. The structures consist of a superconducting loop connected to a normal metal electrode through a tunnel barrier . An optical interferometer with a beam splitter can be considered as a classical analogue for this system. All measurements were performed at temperatures well below 1 K. The interference can be observed as periodic oscillations of the tunnel current (voltage) through the junction at fixed bias voltage (current) as a function of a perpendicular magnetic field. The magnitude of the oscillations depends on the bias point. It reaches a maximum at energ…
Screening Order–Disorder Phase Transition in 1-D Perovskite-like Crystals of [Azetidinium]CdBr3
2022
In search for new polar compounds, we have synthesized the organic–inorganic hybrid [C3H8N]CdBr3 (AZECdBr3). This is a bromide analog of [C3H8N]CdCl3, which has been studied by us earlier. The chloride compound exhibited ferroelectric properties, so it seemed reasonable to check the properties of AZECdBr3. The AZECdBr3 crystals reveal three phase transitions (PTs): the first one (I → II) of the second order at 437.0/436.7 K (heating/cooling), the next (also of the second order) at 231.0 K (II → III), and the last one (classified as a first-order transition) at 197.0/194.0 K (III → IV). On the basis of the DSC data, the thermodynamic parameters have been estimated. The single-crystal X-ray m…
10 Gb/s transmission and thermo-optic resonance tuning in silicon-plasmonic waveguide platform
2011
The first system-level experimental results of hybrid Si-DLSPP structures incorporated into a SOI chip are reported. We demonstrate over 7nm thermo-optical tuning of a Si-Plasmonic racetrack-resonator and verify error-free 10Gb/s transmission through 60um Si-Plasmonic waveguide.
Topological Insulators from a Chemist's Perspective
2012
Topology and chemistry are deeply entangled subjects, whichmanifests in the way chemists like to think and approachproblems. Although not at first glance, topology allows thecategorizationoffundamentalinherentpropertiesofthehugenumber of different chemical compounds, carving out theunique features of a class of materials of different complexity,a topic which Turro worked out in his treatise on geometricaland topological thinking in chemistry.
Active Plasmonics in True Data Traffic Applications: Thermo-Optic On/Off Gating Using a Silicon-Plasmonic Asymmetric MachZehnder Interferometer
2012
We present the first system-level demonstration of an active plasmonic device in 10-Gb/s data traffic conditions. An asymmetric silicon-plasmonic Mach-Zehnder interferometer with dielectric-loaded plasmonic waveguides serving as the electrically controlled arms, operates as thermo-optic ON/OFF gating element with 2.8-mu s response time and 10.8-mW power consumption. We present the first system-level demonstration of an active plasmonic device in 10-Gb/s data traffic conditions. An asymmetric silicon-plasmonic Mach-Zehnder interferometer with dielectric-loaded plasmonic waveguides serving as the electrically controlled arms, operates as thermo-optic ON/OFF gating element with 2.8-mu s respon…
Substrate templating upon self-assembly of hydrogen-bonded molecular networks on an insulating surface.
2012
M olecular self-assembly on insulating surfaces, despite being highly relvant to many applications, generally suffers from the weak molecule–surface interactions present on dielectric surfaces, especially when benchmarked against metallic substrates. Therefore, to fully exploit the potential of molecular self-assembly, increasing the infl uence of the substrate constitutes an essential prerequisite. Upon deposition of terephthalic acid and trimesic acid onto the natural cleavage plane of calcite, extended hydrogen-bonded networks are formed, which wet the substrate. The observed structural complexity matches the variety realized on metal surfaces. A detailed analysis of the molecular struct…
Hybrid quantum anomalous Hall effect at graphene-oxide interfaces
2021
Interfaces are ubiquitous in materials science, and in devices in particular. As device dimensions are constantly shrinking, understanding the physical properties emerging at interfaces is crucial to exploit them for applications, here for spintronics. Using first-principles techniques and Monte Carlo simulations, we investigate the mutual magnetic interaction at the interface between graphene and an antiferromagnetic semiconductor BaMnO3. We find that graphene deeply affects the magnetic state of the substrate, down to several layers below the interface, by inducing an overall magnetic softening, and switching the in-plane magnetic ordering from antiferromagnetic to ferromagnetic. The grap…
Interfacial Dzyaloshinskii-Moriya interaction and chiral magnetic textures in a ferrimagnetic insulator
2019
The interfacial Dzyaloshinskii-Moriya interaction (DMI) in multilayers of heavy metal and ferromagnetic metals enables the stabilization of novel chiral spin structures such as skyrmions. Magnetic insulators, on the other hand can exhibit enhanced dynamics and properties such as lower magnetic damping and therefore it is of interest to combine the properties enabled by interfacial DMI with insulating systems. Here, we demonstrate the presence of interfacial DMI in heterostructures that include insulating magnetic layers. We use a bilayer of perpendicularly magnetized insulating thulium iron garnet (TmIG) and the heavy metal platinum, and find a surprisingly strong interfacial DMI that, comb…
Tracks induced in TeO2 by heavy ions at low velocities
2000
On the basis of its thermal properties, TeO2 crystal was selected as an insulator with low threshold electronic stopping power for track formation Set. The crystals were irradiated by S, Zn, Mo, Kr, Te and Pb ions and the optical absorption and track formation were studied. Comparison is made with the published results on LiNbO3 ,Y 3Fe5O12 and SiO2 quartz. Good quantitative agreement is found with the predictions of the thermal spike model of Szenes with respect to Set and the variation of the track size with the electronic stopping power Se. It is shown that TeO2 has a high eAciency g at low ion velocities, which is a characteristic feature of the damage cross-section velocity eAect. ” 200…