Search results for "INSULATOR"
showing 10 items of 228 documents
Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets
2018
Reflecting the fundamental interactions of polarized light with magnetic matter, magneto-optical effects are well known since more than a century. The emergence of these phenomena is commonly attributed to the interplay between exchange splitting and spin-orbit coupling in the electronic structure of magnets. Using theoretical arguments, we demonstrate that topological magneto-optical effects can arise in noncoplanar antiferromagnets due to the finite scalar spin chirality, without any reference to exchange splitting or spin-orbit coupling. We propose spectral integrals of certain magneto-optical quantities that uncover the unique topological nature of the discovered effect. We also find th…
Enhancer, chromatin insulator, non-coding RNA and α-histone gene expression during embryogenesis of the sea urchin Paracentrotus lividus.
2009
Core promoters and chromatin insulators (ins) may direct a transcriptional enhancer (enh) to prefer a specific promoter in complex genetic loci. Enh and ins flank the sea urchin Paracentrotus lividus α-histone H2A transcription unit in a tandem repeated cluster containing the five histone genes. In vivo competition assays of enh and ins functions reveal that the H2A enh-bound MBF-1 activator participates also in the expression of the H3 gene and that the sns5 ins buffers the downstream H1 promoter from the H2A enh. These results suggest that both the H2A enh and the sns5 ins may account for the diverse accumulation of the linker vs core nucleosomal histones during early development of the s…
The sea urchin sns5 chromatin insulator settles a gene therapy vector into an independent domain of expression in the vertebrate genome
2014
One of the critical aspects of introducing a transgene into the eukaryotic genome is the great variability of gene expression due to position effects (1). Chromatin-dependent repressive states could be overcome by incorporation in the transgene of chromatin insulators, functioning to establish and delimit domains of expression. We have previously demonstrated that the sea urchin sns5 DNA element has the typical features of an insulator: by acting as enhancer blocker, it shields promoters from neighboring regulatory elements, and by acting as barrier it buffers a transgene from the propagation of condensed chromatin (2,3). We have investigated the use of sns5 in the field of gene therapy. Ou…
The sea urchin histone H2A enhancer-binding protein MBF-1 is needed for maximal expression also for the H3 gene, while is buffered by the sns5 insula…
2009
Enhancers are DNA elements which increase the transcription of associated gene in a position and distance independent manner relative to the transcription initiation site. Molecular mechanisms must operate to direct enhancers to specific promoters in complex genetic loci. The sea urchin a-histone genes are organized in several hundred tandem repeated units, each containing one copy of the five histone genes in the order 5’-H4-H2B-H3-H2A-H1-3’. Transcription is limited to the early cleavage and reaches its maximum at morula stage. After hatching these genes are repressed and maintained in the silenced state for whole life cycle of the animal. In Paracentrotus lividus, the MBF-1 activator bin…
Active Plasmonics in True Data Traffic Applications: Thermo-Optic On/Off Gating Using a Silicon-Plasmonic Asymmetric MachZehnder Interferometer
2012
We present the first system-level demonstration of an active plasmonic device in 10-Gb/s data traffic conditions. An asymmetric silicon-plasmonic Mach-Zehnder interferometer with dielectric-loaded plasmonic waveguides serving as the electrically controlled arms, operates as thermo-optic ON/OFF gating element with 2.8-mu s response time and 10.8-mW power consumption. We present the first system-level demonstration of an active plasmonic device in 10-Gb/s data traffic conditions. An asymmetric silicon-plasmonic Mach-Zehnder interferometer with dielectric-loaded plasmonic waveguides serving as the electrically controlled arms, operates as thermo-optic ON/OFF gating element with 2.8-mu s respon…
Haldane Model at finite temperature
2019
We consider the Haldane model, a 2D topological insulator whose phase is defined by the Chern number. We study its phases as temperature varies by means of the Uhlmann number, a finite temperature generalization of the Chern number. Because of the relation between the Uhlmann number and the dynamical transverse conductivity of the system, we evaluate also the conductivity of the model. This analysis does not show any sign of a phase transition induced by the temperature, nonetheless it gives a better understanding of the fate of the topological phase with the increase of the temperature, and it provides another example of the usefulness of the Uhlmann number as a novel tool to study topolog…
High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3
2013
Bi2Se3, Bi2Te3, and Sb2Te3 are narrow bandgap semiconductors with tetradymite crystal structure (R-3m) which have been extensively studied along with their alloys due to their promising operation as thermoelectric materials in the temperature range between 300 and 500¿K. Studies on these layered semiconductors have increased tremendously in the last years since they have been recently predicted and demonstrated to behave as 3D topological insulators. In particular, a number of high-pressure studies have been done in the recent years in these materials. In this work we summarize the main results of the high-pressure studies performed in this family of semiconductors to date. In particular, w…
Thermal, electric and spin transport in superconductor/ferromagnetic-insulator structures
2019
A ferromagnetic insulator (FI) attached to a conventional superconductor (S) changes drastically the properties of the latter. Specifically, the exchange field at the FI/S interface leads to a splitting of the superconducting density of states. If S is a superconducting film, thinner than the superconducting coherence length, the modification of the density of states occurs over the whole sample. The co-existence of the exchange splitting and superconducting correlations in S/FI structures leads to striking transport phenomena that are of interest for applications in thermoelectricity, superconducting spintronics and radiation sensors. Here we review the most recent progress in understandin…
Tunable multifunctional topological insulators in ternary Heusler compounds
2010
Recently the Quantum Spin Hall effect (QSH) was theoretically predicted and experimentally realized in a quantum wells based on binary semiconductor HgTe[1-3]. QSH state and topological insulators are the new states of quantum matter interesting both for fundamental condensed matter physics and material science[1-11]. Many of Heusler compounds with C1b structure are ternary semiconductors which are structurally and electronically related to the binary semiconductors. The diversity of Heusler materials opens wide possibilities for tuning the band gap and setting the desired band inversion by choosing compounds with appropriate hybridization strength (by lattice parameter) and the magnitude o…
Giant Negative Magnetoresistance in GdI2: Prediction and Realization
1999
The electronic structure of the layered d1 compound GdI2 has been examined systematically in view of its relation to other layered d1 systems including superconducting and isostructural 2H-TaS2 and 2H-NbSe2. A van Hove type instability is evident in suitable representations of the Fermi surface. The presence of the half-filled and magnetic 4f level should preclude the possibility of superconductivity. Instead GdI2 orders ferromagnetically at 290(5) K and displays large negative magnetoresistance ≈70% at 7 T close to room temperature. This finding provides support to the idea that materials can be searched rationally for interesting properties through high level electronic structure calculat…