Search results for "INSULATOR"

showing 10 items of 228 documents

Understanding the Giant Enhancement of Exchange Interaction in Bi2Se3−EuS Heterostructures

2017

A recent experiment indicated that a ferromagnetic EuS film in contact with a topological insulator ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ might show a largely enhanced Curie temperature and perpendicular magnetic anisotropy [F. Katmis et al., Nature (London) 533, 513 (2016).]. Through systematic density functional calculations, we demonstrate that in addition to the factor that ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ has a strong spin orbit coupling, the topological surface states are crucial to make these unusual behaviors robust as they hybridize with EuS states and extend rather far into the magnetic layers. The magnetic moments of Eu atoms are nevertheless not much enhanced, unlike what was…

PhysicsCondensed matter physicsMagnetic momentExchange interactionGeneral Physics and AstronomyHeterojunction02 engineering and technologySpin–orbit interaction021001 nanoscience & nanotechnology01 natural sciencesFerromagnetismTopological insulator0103 physical sciencesCurie temperature010306 general physics0210 nano-technologySurface statesPhysical Review Letters
researchProduct

On-surface covalent linking of organic building blocks on a bulk insulator.

2011

On-surface synthesis in ultrahigh vacuum provides a promising strategy for creating thermally and chemically stable molecular structures at surfaces. The two-dimensional confinement of the educts, the possibility of working at higher (or lower) temperatures in the absence of solvent, and the templating effect of the surface bear the potential of preparing compounds that cannot be obtained in solution. Moreover, covalently linked conjugated molecules allow for efficient electron transport and are, thus, particularly interesting for future molecular electronics applications. When having these applications in mind, electrically insulating substrates are mandatory to provide sufficient decoupli…

Materials sciencenoncontact atomic force microscopymolecular electronicsGeneral EngineeringGeneral Physics and AstronomyMolecular electronicssurface chemistryInsulator (electricity)NanotechnologyinsulatorConjugated system530Electron transport chainSolventMetalcovalent linkingCovalent bondvisual_artvisual_art.visual_art_mediumMoleculeon-surface synthesisGeneral Materials SciencebulkACS nano
researchProduct

Accessing finite momentum excitations of the one-dimensional Bose-Hubbard model using superlattice modulation spectroscopy

2018

We investigate the response to superlattice modulation of a bosonic quantum gas confined to arrays of tubes emulating the one-dimensional Bose-Hubbard model. We demonstrate, using both time-dependent density matrix renormalization group and linear response theory, that such a superlattice modulation gives access to the excitation spectrum of the Bose-Hubbard model at finite momenta. Deep in the Mott-insulator, the response is characterized by a narrow energy absorption peak at a frequency approximately corresponding to the onsite interaction strength between bosons. This spectroscopic technique thus allows for an accurate measurement of the effective value of the interaction strength. On th…

BosonizationPhysicsCondensed Matter::Quantum GasesCondensed matter physics[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Density matrix renormalization groupMott insulatorSuperlatticeFOS: Physical sciencesBose–Hubbard model01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasSuperfluidityBose-Hubbard modelQuantum Gases (cond-mat.quant-gas)Atomic and Molecular PhysicsDMRG0103 physical sciencesBosonizationand Optics010306 general physicsCondensed Matter - Quantum GasesFrequency modulationBoson
researchProduct

Giant magnetoresistance in semiconducting DyNiBi

2008

Abstract The semiconducting half-Heulser compound DyNiBi shows a negative giant magnetoresistance (GMR) below 200 K. Except for a weak deviation, this magnetoresistance scales roughly with the square of the magnetization in the paramagnetic state, and is related to the metal–insulator transition. At low temperature, a positive magnetoresistance is found, which can be suppressed by high fields. The magnitude of the positive magnetoresistance changes slightly with the amount of impurity phase.

ParamagnetismMagnetizationColossal magnetoresistanceMaterials scienceCondensed matter physicsMagnetoresistanceImpurityPhase (matter)Materials ChemistryGiant magnetoresistanceGeneral ChemistryMetal–insulator transitionCondensed Matter PhysicsSolid State Communications
researchProduct

Topological surface wave metamaterials for robust vibration attenuation and energy harvesting

2021

International audience; We propose topological metamaterials working in Hertz frequency range, constituted of concrete pillars on the soil ground in a honeycomb lattice. Based on the analog of the quantum valley Hall effect, a non-trivial bandgap is formed by breaking the inversion symmetry of the unit cell. A topological interface is created between two different crystal phases whose robustness against various defects and disorders is quantitatively analyzed. Finally, we take advantage of the robust and compact topological edge state for designing a harvesting energy device. The results demonstrate the functionality of the proposed structure for both robust surface vibration reduction and …

energy harvestingGeneral MathematicsrobustnessTopology[SPI.MAT]Engineering Sciences [physics]/Materials[SPI]Engineering Sciences [physics]Surface wave metamaterialHertzHoneycombGeneral Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsQuantumCivil and Structural EngineeringPhysics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]topological insulatorMechanical EngineeringMetamaterialCondensed Matter::Mesoscopic Systems and Quantum Hall EffectPhysics::Classical PhysicsLattice (module)vibration attenuationMechanics of MaterialsSurface waveTopological insulatorEnergy harvesting
researchProduct

Probing the bond order wave phase transitions of the ionic Hubbard model by superlattice modulation spectroscopy

2017

An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidences, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals characteristics of both the Ising and Kosterlitz-Thouless transitions …

BosonizationHubbard model[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]SuperlatticeGeneral Physics and AstronomyIonic bondingFOS: Physical sciences01 natural sciencesCondensed Matter - Strongly Correlated ElectronsPhysics and Astronomy (all)0103 physical sciencesBosonizationCold atoms010306 general physicsPhysicsCondensed Matter::Quantum GasesCondensed matter physicsDensity Matrix Renormalization GroupStrongly Correlated Electrons (cond-mat.str-el)010308 nuclear & particles physicsMott insulatorBerezinskii-Kosterlitz-Thouless transitionIsing transitionRenormalization groupBond orderQuantum Gases (cond-mat.quant-gas)Ising modelCondensed Matter::Strongly Correlated ElectronsCondensed Matter - Quantum Gases
researchProduct

Critical behavior of Si:P at the metal-insulator transition

1994

A Comment on the Letter by H. Stupp et al., Phys. Rev. Lett. 71, 2634 (1993).

Materials scienceCondensed matter physicsGeneral Physics and AstronomyMetal–insulator transition
researchProduct

Molecular semiconductor-doped insulator (MSDI) heterojunctions: Oligothiophene/bisphtalocyanine (LuPc2) and perylene/bisphthalocyanine as new structu…

2010

Abstract The combination of a sexithiophene and a perylene diimide derivatives, as p-type and n-type materials, respectively, used as sub-layers, to an intrinsic semiconductor, namely the lutetium bisphthalocyanine, allows to obtain a new transducer for gas sensing. These transducers were called molecular semiconductor-doped insulator (MSDI) heterojunctions, were recently designed and reported, but with only phthalocyanines as active materials. p-Type material leads to MSDIs that exhibit a positive response to ozone and a negative response to ammonia, whereas MSDIs prepared from n-type material exhibit a positive response to ammonia and negative response to ozone. The remarkable point is th…

Materials scienceIntrinsic semiconductorbusiness.industryDopingMetals and Alloyschemistry.chemical_elementHeterojunctionInsulator (electricity)Condensed Matter PhysicsLutetiumSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundTransducerchemistryDiimideMaterials ChemistryOptoelectronicsElectrical and Electronic EngineeringbusinessInstrumentationPeryleneSensors and Actuators B: Chemical
researchProduct

Organic Heterojunction Devices Based on Phthalocyanines: A New Approach to Gas Chemosensing.

2020

Organic heterostructures have emerged as highly promising transducers to realize high performance gas sensors. The key reason for such a huge interest in these devices is the associated organic heterojunction effect in which opposite free charges are accumulated at the interface making it highly conducting, which can be exploited in producing highly sensitive and faster response kinetics gas sensors. Metal phthalocyanines (MPc) have been extensively studied to fabricate organic heterostructures because of the large possibilities of structural engineering which are correlated with their bulk thin film properties. Accordingly, in this review, we have performed a comprehensive literature surve…

Materials scienceInsulator (electricity)Review02 engineering and technologyphthalocyanines010402 general chemistrylcsh:Chemical technology01 natural sciencesBiochemistrySignalAnalytical Chemistrylaw.inventionlawSaturation currentheterostucture[CHIM]Chemical Scienceslcsh:TP1-1185Electrical and Electronic EngineeringThin filmInstrumentation[PHYS]Physics [physics]conductometric transducersbusiness.industryTransistorHeterojunction021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesTransducergas sensorsorganic heterojunctionsOptoelectronicstransistorsorganic heterojunction effects0210 nano-technologybusinessLiterature surveySensors (Basel, Switzerland)
researchProduct

Formation of spatial shell structures in the superfluid to Mott insulator transition

2006

International audience; We report on the direct observation of the transition from a compressible superfluid to an incompressible Mott insulator by recording the in-trap density distribution of a Bosonic quantum gas in an optical lattice. Using spatially selective microwave transitions and spin changing collisions, we are able to locally modify the spin state of the trapped quantum gas and record the spatial distribution of lattice sites with different filling factors. As the system evolves from a superfluid to a Mott insulator, we observe the formation of a distinct shell structure, in good agreement with theory.

PhysicsCondensed Matter::Quantum GasesOptical latticeSpin statesCondensed matter physicsMott insulatorFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmasMott transitionCondensed Matter - Other Condensed MatterSuperfluidityLattice (order)[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsMetal–insulator transition010306 general physicsJaynes–Cummings–Hubbard modelOther Condensed Matter (cond-mat.other)
researchProduct