Search results for "INTERACTIONS"

showing 10 items of 1963 documents

Characterization of a Novel Conformational GII.4 Norovirus Epitope: Implications for Norovirus-Host Interactions

2016

ABSTRACT Human noroviruses (NoVs) are the main etiological agents of acute gastroenteritis worldwide. While NoVs are highly diverse (more than 30 genotypes have been detected in humans), during the last 40 years most outbreaks and epidemics have been caused by GII.4 genotype strains, raising questions about their persistence in the population. Among other potential explanations, immune evasion is considered to be a main driver of their success. In order to study antibody recognition and evasion in detail, we analyzed a conformational epitope recognized by a monoclonal antibody (3C3G3) by phage display, site-directed mutagenesis, and surface plasmon resonance. Our results show that the predi…

0301 basic medicinePhage displayGenotypemedicine.drug_classviruses030106 microbiologyImmunologyPopulationBiologyAntibodies Viralmedicine.disease_causeMonoclonal antibodyMicrobiologyEpitope03 medical and health sciencesAntigenVirologymedicineHumanseducationeducation.field_of_studyNorovirusAntibodies Monoclonalvirus diseasesSurface Plasmon ResonanceVirologyVirus-Cell Interactions030104 developmental biologyInsect ScienceHost-Pathogen InteractionsMutagenesis Site-Directedbiology.proteinNorovirusEpitopes B-LymphocyteAntibodyCell Surface Display TechniquesProtein BindingConformational epitope
researchProduct

The role of spatial structure in the evolution of viral innate immunity evasion: A diffusion-reaction cellular automaton model

2020

Most viruses have evolved strategies for preventing interferon (IFN) secretion and evading innate immunity. Recent work has shown that viral shutdown of IFN secretion can be viewed as a social trait, since the ability of a given virus to evade IFN-mediated immunity depends on the phenotype of neighbor viruses. Following this idea, we investigate the role of spatial structure in the evolution of innate immunity evasion. For this, we model IFN signaling and viral spread using a spatially explicit approximation that combines a diffusion-reaction model and cellular automaton. Our results indicate that the benefits of preventing IFN secretion for a virus are strongly determined by spatial struct…

0301 basic medicinePhysiologyApoptosisVirus ReplicationBiochemistryVirionsEpitopes0302 clinical medicineInterferonMedicine and Health SciencesBiology (General)Innate Immune Systemeducation.field_of_studyCell DeathEcology3. Good healthCell biologyPhenotypeComputational Theory and MathematicsCell ProcessesModeling and SimulationViral evolutionHost-Pathogen InteractionsVirusesSignal TransductionResearch Articlemedicine.drugEvolutionary ImmunologyQH301-705.5ImmunologyPopulationViral StructureBiologyAntiviral AgentsMicrobiologyViral EvolutionVirusViral Proteins03 medical and health sciencesCellular and Molecular NeuroscienceImmunityVirologyGeneticsmedicineAnimalsHumansComputer SimulationSocial BehavioreducationMolecular BiologySecretionEcology Evolution Behavior and SystematicsImmune EvasionEvolutionary BiologyInnate immune systemVirionBiology and Life SciencesProteinsCell BiologyEvasion (ethics)Immunity InnateOrganismal Evolution030104 developmental biologyViral replicationImmune SystemMicrobial EvolutionInterferonsPhysiological Processes030217 neurology & neurosurgery
researchProduct

Evolutionary stability of topologically associating domains is associated with conserved gene regulation

2018

AbstractBackgroundThe human genome is highly organized in the three-dimensional nucleus. Chromosomes fold locally into topologically associating domains (TADs) defined by increased intra-domain chromatin contacts. TADs contribute to gene regulation by restricting chromatin interactions of regulatory sequences, such as enhancers, with their target genes. Disruption of TADs can result in altered gene expression and is associated to genetic diseases and cancers. However, it is not clear to which extent TAD regions are conserved in evolution and whether disruption of TADs by evolutionary rearrangements can alter gene expression.ResultsHere, we hypothesize that TADs represent essential functiona…

0301 basic medicinePhysiologyEvolutionGenome rearrangementsGene ExpressionGenomicsPlant ScienceComputational biologyBiologyGenomeGeneral Biochemistry Genetics and Molecular BiologyEvolution Molecular03 medical and health sciencesMiceStructural BiologyHi-CGene expressionAnimalsHumansEnhancerlcsh:QH301-705.5GeneSelectionEcology Evolution Behavior and SystematicsRegulation of gene expressionGenomeTopologically associating domainsGenome HumanCell BiologyTADChromatin Assembly and DisassemblyChromatinGene regulation030104 developmental biologylcsh:Biology (General)Gene Expression RegulationRegulatory sequenceHuman genomeGeneral Agricultural and Biological SciencesStructural variantsChromatin interactions3D genome architectureDevelopmental BiologyBiotechnologyResearch ArticleBMC Biology
researchProduct

Life history adjustments to intestinal inflammation in a gut nematode.

2017

ABSTRACT Many parasitic nematodes establish chronic infections. This implies a finely tuned interaction with the host immune response in order to avoid infection clearance. Although a number of immune interference mechanisms have been described in nematodes, how parasites adapt to the immune environment provided by their hosts remains largely unexplored. Here, we used the gastrointestinal nematode Heligmosomoides polygyrus to investigate the plasticity of life history traits and immunomodulatory mechanisms in response to intestinal inflammation. We adopted an experimental model of induced colitis and exposed worms to intestinal inflammation at two different developmental stages (larvae and …

0301 basic medicinePhysiologyPhenotypic plasticityAquatic ScienceHost-Parasite InteractionsImmunomodulation03 medical and health sciencesMice0302 clinical medicineImmune systemparasitic diseases[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/Symbiosismedicine[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyAnimalsColitisAdaptationIntestinal Diseases ParasiticMolecular BiologyLife History TraitsEcology Evolution Behavior and SystematicsStrongylida InfectionsInfectivityInflammationStrongyloideaPhenotypic plasticityMice Inbred BALB CbiologyHost (biology)Dextran SulfateInflammatory responseHelminth Proteinsmedicine.diseasebiology.organism_classification3. Good healthIntestinesDisease Models Animal030104 developmental biologyNematodeInfectivityInsect ScienceLarvaImmunology[SDV.IMM]Life Sciences [q-bio]/ImmunologyAnimal Science and ZoologyHeligmosomoides polygyrusAdaptation030215 immunology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisThe Journal of experimental biology
researchProduct

Interaction of G protein coupled receptors and cholesterol

2016

G protein coupled receptors (GPCRs) form the largest receptor superfamily in eukaryotic cells. Owing to their seven transmembrane helices, large parts of these proteins are embedded in the cholesterol-rich plasma membrane bilayer. Thus, GPCRs are always in proximity to cholesterol. Some of them are functionally dependent on the specific presence of cholesterol. Over the last years, enormous progress on receptor structures has been achieved. While lipophilic ligands other than cholesterol have been shown to bind either inside the helix bundle or at the receptor-lipid interface, the binding site of cholesterol was either a single transmembrane helix or a groove between two or more transmembra…

0301 basic medicinePlasma protein bindingLigandsBiochemistryReceptors G-Protein-Coupled03 medical and health sciences0302 clinical medicineHumansBinding siteReceptorMolecular BiologyG protein-coupled receptorHelix bundleChemistryOrganic ChemistryCholesterol bindingCell BiologyTransmembrane domainCholesterol030104 developmental biologyBiochemistrylipids (amino acids peptides and proteins)LeucineHydrophobic and Hydrophilic Interactions030217 neurology & neurosurgeryProtein BindingChemistry and Physics of Lipids
researchProduct

Viral fitness correlates with the magnitude and direction of the perturbation induced in the host’s transcriptome: the tobacco etch Potyvirus—tobacco…

2018

Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyv…

0301 basic medicinePotyvirusViral fitnessGene ExpressionBiologyReal-Time Polymerase Chain ReactionHost-virus interactionModels BiologicalTranscriptome03 medical and health sciencesDarwinian FitnessTobaccoGene expressionGeneticsTranscriptomicsGeneMolecular BiologyDiscoveriesEcology Evolution Behavior and SystematicsPlant DiseasesNicotiana tabacum PotyvirusGeneticsNicotiana tabacumPotyvirusresponse to infection Systems biologyPotyvirusRNAMicroarray Analysisbiology.organism_classificationResponse to infectionVirus evolutionRNA silencing030104 developmental biologyViral evolutionHost-Pathogen InteractionsTEVGenetic FitnessTranscriptomeSystems biologyHost–virus interaction
researchProduct

Viral Bcl2s' transmembrane domain interact with host Bcl2 proteins to control cellular apoptosis

2020

© The Author(s) 2020.

0301 basic medicineProgrammed cell deathScienceProtein domainGeneral Physics and AstronomyApoptosisBiologyVirus-host interactionsArticleGeneral Biochemistry Genetics and Molecular BiologyFluorescenceCell Line03 medical and health sciences0302 clinical medicineProtein Domainsimmune system diseaseshemic and lymphatic diseasesmedicineHumansAmino Acid SequenceAuthor CorrectionPeptide sequenceneoplasmsMultidisciplinaryVirus–host interactionsQCell MembraneGeneral ChemistryViral proteinsmedicine.diseaseControl cellLymphomaCell biologyVirusTransmembrane domain030104 developmental biologyProto-Oncogene Proteins c-bcl-2Cell cultureApoptosisDoxorubicin030220 oncology & carcinogenesisbiological phenomena cell phenomena and immunityProtein MultimerizationHydrophobic and Hydrophilic InteractionsProteïnesProtein Binding
researchProduct

The Crystal Structure of Gurmarin, a Sweet Taste–Suppressing Protein: Identification of the Amino Acid Residues Essential for Inhibition

2018

International audience; Gurmarin is a highly specific sweet-taste suppressing protein in rodents that is isolated from the Indian plant Gymnemasylvestre. Gurmarin consists of 35 amino acid residues containing three intramolecular disulfide bridges that form a cystine knot. Here, we report the crystal structure of gurmarin at a 1.45 Å resolution and compare it with previously reported NMR solution structures. The atomic structure at this resolution allowed us to identify a very flexible region consisting of hydrophobic residues. Some of these amino acid residues had been identified as a putative binding site for the rat sweet taste receptor in a previous study. By combining alanine-scanning …

0301 basic medicineProtein ConformationPhysiologyCrystal structureCrystallography X-Ray03 medical and health sciencesBehavioral NeuroscienceGPCRsweet tastetaste receptorPhysiology (medical)goût sucréAnimalsHumansG protein-coupled receptorAmino AcidsBinding siteReceptorNuclear Magnetic Resonance BiomolecularPlant ProteinsGurmarininhibiteur030102 biochemistry & molecular biologybiologyChemistryMutagenesisCystine knotGymnema sylvestreSweet tastebiology.organism_classificationRecombinant ProteinsSensory SystemsRats3. Good healthinhibitorHEK293 Cells030104 developmental biologyBiochemistryGymnema sylvestreknottin[SDV.AEN]Life Sciences [q-bio]/Food and NutritionHydrophobic and Hydrophilic InteractionsChemical Senses
researchProduct

Chaperoning the Mononegavirales: Current Knowledge and Future Directions

2018

This article belongs to the Special Issue Breakthroughs in Viral Replication.

0301 basic medicineProtein Foldingrespiratory syncytial viruslcsh:QR1-502ReviewRespiratory syncytial virusVirus Replicationmedicine.disease_causelcsh:MicrobiologyHsp70Ebola virusantiviralsChaperonesMononegaviralesOrder MononegaviralesbiologyAntivirals<i>Mononegavirales</i>Hsp90Respiratory Syncytial VirusesInfectious DiseasesMumps virusHost-Pathogen InteractionsProtein foldingHsp90biology_otherComputational biologyAntiviral Agents03 medical and health sciencesEmerging infectionsVirologymedicineHumanschaperonesHSP70 Heat-Shock Proteinsrabies virusHSP90 Heat-Shock ProteinsEbola virusObligatebiology.organism_classificationCCT030104 developmental biologyMeasles virusRabies virusChaperone (protein)measles virusbiology.proteinmumps virusMononegaviralesMolecular ChaperonesViruses
researchProduct

The C-terminal Domains of Apoptotic BH3-only Proteins Mediate Their Insertion into Distinct Biological Membranes

2016

Changes in the equilibrium of pro- and anti-apoptotic members of the B-cell lymphoma-2 (Bcl-2) protein family in the mitochondrial outer membrane (MOM) induce structural changes that commit cells to apoptosis. Bcl-2 homology-3 (BH3)-only proteins participate in this process by either activating pro-apoptotic effectors or inhibiting anti-apoptotic components and by promoting MOM permeabilization. The association of BH3-only proteins with MOMs is necessary for the activation and amplification of death signals; however, the nature of this association remains controversial, as these proteins lack a canonical transmembrane sequence. Here we used an in vitro expression system to study the inserti…

0301 basic medicineProtein familyCèl·lulesBiologyBiochemistryMitochondrial Proteins03 medical and health sciencesProtein DomainsMembranes (Biologia)Protein-fragment complementation assayMembrane BiologyMicrosomesProto-Oncogene ProteinsHumansMolecular BiologyAdaptor Proteins Signal TransducingGeneticsBcl-2-Like Protein 11030102 biochemistry & molecular biologyCell MembraneBcl-2 familyProteïnes de membranaMembrane ProteinsBiological membraneCell BiologyFusion proteinTransmembrane proteinCell biology030104 developmental biologyMembraneProto-Oncogene Proteins c-bcl-2Membrane proteinB-cell lymphoma 2 (Bcl-2) family BH3-only apoptosis membrane insertion membrane protein mitochondrial apoptosis transmembrane domainApoptosis Regulatory ProteinsHydrophobic and Hydrophilic InteractionsHeLa CellsJournal of Biological Chemistry
researchProduct