Search results for "INTERNALIZATION"
showing 10 items of 159 documents
Evidence for Conformational Mechanism on the Binding of TgMIC4 with β-Galactose-Containing Carbohydrate Ligand
2015
A deeper understanding of the role of sialic/desialylated groups during TgMIC4-glycoproteins interactions has importance to better clarify the odd process of host cell invasion by members of the apicomplexan phylum. Within this context, we evaluated the interaction established by recombinant TgMIC4 (the whole molecule) with sialylated (bovine fetuin) and desialylated (asialofetuin) glycoproteins by using functionalized quartz crystal microbalance with dissipation monitoring (QCM-D). A suitable receptive surface containing recombinant TgMIC4 for monitoring β-galactose-containing carbohydrate ligand (limit of quantification ∼ 40 μM) was designed and used as biomolecular recognition platform t…
Permeability changes of integrin-containing multivesicular structures triggered by picornavirus entry.
2014
Cellular uptake of clustered α2β1-integrin induces the formation of membrane compartments that subsequently mature into a multivesicular body (MVB). Enhanced internalization mediated by clustered integrins was observed upon infection by the picornavirus echovirus 1 (EVI). We elucidated the structural features of virus-induced MVBs (vMVBs) in comparison to antibody-induced control MVBs (mock infection) by means of high-pressure cryo fixation of cells followed by immuno electron tomography during early entry of the virus. Three-dimensional tomograms revealed a marked increase in the size and complexity of these vMVBs and the intraluminal vesicles (ILVs) at 2 and 3.5 hours post infection (p.i.…
CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells
2004
We investigated the membrane localization of CD95 in type I and type II cells, which differ in their ability to recruit and activate caspase-8. We found that CD95 was preferentially located in lipid rafts of type I cells, while it was present both in raft and non-raft plasma membrane sub-domains of type II cells. After stimulation, CD95 located in phospholipid-rich plasma membrane was recruited to lipid rafts in both types of cells. Similarly, CD95 cross-linking resulted in caspase-independent translocation of FADD/MORT1 and caspase-8 to the lipid rafts, which was prevented by a death domain-defective receptor. CD95 internalization was then rapid in type I and delayed in type II cells and s…
Hybrid Chelator-Based PSMA Radiopharmaceuticals: Translational Approach
2021
(1) Background: Prostate-specific membrane antigen (PSMA) has been extensively studied in the last decade. It became a promising biological target in the diagnosis and therapy of PSMA-expressing cancer diseases. Although there are several radiolabeled PSMA inhibitors available, the search for new compounds with improved pharmacokinetic properties and simplified synthesis is still ongoing. In this study, we developed PSMA ligands with two different hybrid chelators and a modified linker. Both compounds have displayed a promising pharmacokinetic profile. (2) Methods: DATA5m.SA.KuE and AAZTA5.SA.KuE were synthesized. DATA5m.SA.KuE was labeled with gallium-68 and radiochemical yields of various…
Exploring the cellular uptake of hectorite clay mineral and its drug carrier capabilities.
2022
In the last years, the use of clay minerals for pharmaceutical purposes has increased due to their interesting properties. Hectorite (Ht) is a clay belonging to the smectite group which has attracted attention for applications in biology, tissue engineering and as drug carrier and delivery system. However, the mechanisms involved in Ht cellular uptake and transport into cells, are still unclear. Herein, we used a labeled Ht (Ht/1Cl) to study both the cellular uptake, by confocal laser scanning microscopy, and internalization pathways involved in the cellular uptake, by various endocytosis-inhibiting studies and fluorescence microscopy. These studies highlighted that Ht can penetrate the cel…
Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium
2013
Current malaria therapeutics demands strategies able to selectively deliver drugs to Plasmodium-infected red blood cells (pRBCs) in order to limit the appearance of parasite resistance. Here, the poly(amidoamines) AGMA1 and ISA23 have been explored for the delivery of antimalarial drugs to pRBCs. AGMA1 has antimalarial activity per se as shown by its inhibition of the in vitro growth of Plasmodium falciparum, with an IC50 of 13.7 μM. Fluorescence-assisted cell sorting data and confocal fluorescence microscopy and transmission electron microscopy images indicate that both polymers exhibit preferential binding to and internalization into pRBCs versus RBCs, and subcellular targeting to the par…
Echovirus 1 Entry into Polarized Caco-2 Cells Depends on Dynamin, Cholesterol, and Cellular Factors Associated with Macropinocytosis
2013
ABSTRACT Enteroviruses invade their hosts by crossing the intestinal epithelium. We have examined the mechanism by which echovirus 1 (EV1) enters polarized intestinal epithelial cells (Caco-2). Virus binds to VLA-2 on the apical cell surface and moves rapidly to early endosomes. Using inhibitory drugs, dominant negative mutants, and small interfering RNAs (siRNAs) to block specific endocytic pathways, we found that virus entry requires dynamin GTPase and membrane cholesterol but is independent of both clathrin- and caveolin-mediated endocytosis. Instead, infection requires factors commonly associated with macropinocytosis, including amiloride-sensitive Na + /H + exchange, protein kinase C, …
Coxsackievirus A9 Infects Cells via Nonacidic Multivesicular Bodies
2014
ABSTRACT Coxsackievirus A9 (CVA9) is a member of the human enterovirus B species in the Enterovirus genus of the family Picornaviridae . According to earlier studies, CVA9 binds to αVβ3 and αVβ6 integrins on the cell surface and utilizes β2-microglobulin, dynamin, and Arf6 for internalization. However, the structures utilized by the virus for internalization and uncoating are less well understood. We show here, based on electron microscopy, that CVA9 is found in multivesicular structures 2 h postinfection (p.i.). A neutral red labeling assay revealed that uncoating occurs mainly around 2 h p.i., while double-stranded RNA is found in the cytoplasm after 3 h p.i. The biogenesis of multivesicu…
Early entry events in Echovirus 30 infection
2020
Echovirus 30 (E30), a member of the enterovirus B species, is a major cause of viral meningitis, targeting children and adults alike. While it is a frequently isolated enterovirus and the cause of several outbreaks all over the world, surprisingly little is known regarding its entry and replication strategy within cells. In this study, we used E30 strain Bastianni (E30B) generated from an infectious cDNA clone in order to study early entry events during infection in human RD cells. E30B required the newly discovered Fc echovirus receptor (FcRn) for successful infection, but not the coxsackievirus and adenovirus receptor (CAR) or decay-accelerating factor (DAF), although an interaction with …
Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma.
2019
During wound repair, branching morphogenesis and carcinoma dissemination, cellular rearrangements are fostered by a solid-to-liquid transition, known as unjamming. The biomolecular machinery behind unjamming and its pathophysiological relevance remain, however, unclear. Here, we study unjamming in a variety of normal and tumorigenic epithelial two-dimensional (2D) and 3D collectives. Biologically, the increased level of the small GTPase RAB5A sparks unjamming by promoting non-clathrin-dependent internalization of epidermal growth factor receptor that leads to hyperactivation of the kinase ERK1/2 and phosphorylation of the actin nucleator WAVE2. This cascade triggers collective motility effe…