Search results for "ISC"
showing 10 items of 48980 documents
Full-dimensional control of the radiationless decay in pyrazine using the dynamic Stark effect
2014
We present a full quantum-mechanical study of the laser control of the radiationless decay between the B3u(nπ(*)) and B2u(ππ(*)) states of pyrazine using the dynamic Stark effect. In contrast to our previous study [Sala et al., J. Chem. Phys. 140, 194309 (2014)], where a four-dimensional model was used, all the 24 degrees of freedom are now included in order to test the robustness of the strategy of control. Using a vibronic coupling Hamiltonian model in a diabatic representation, the multi-layer version of the multi-configuration time-dependent Hartree method is exploited to propagate the corresponding wave packets. We still observe a trapping of the wavepacket on the B2u(ππ(*)) potential …
Introduction to the special issue on molecular spectroscopy, atmospheric composition and climate change
2018
International audience
Steering the excited state dynamics of a photoactive yellow protein chromophore analogue with external electric fields
2014
Abstract The first excited state of the Photoactive Yellow Protein chromophore exhibits a strong charge transfer character and the dipole moments of the excited and ground states differ significantly. Furthermore, the excited state charge distribution changes during the isomerization of this chromophore. These observations suggest that external electric fields can be used to control photo-isomerization, providing a new concept for developing photochromic devices, such as e-paper or optical memory. To test this idea, we performed excited state dynamics simulations and static calculations of a PYP chromophore analogue (pCK − ) in an external electric field. By adjusting direction and strength…
Enhanced alignment and orientation of polar molecules by vibrational resonant adiabatic passage
2007
The authors show that polar molecules can be adiabatically aligned and oriented by laser pulses more efficiently when the laser frequencies are vibrationally resonant. The aligned molecules are found in a superposition of vibrational pendular states, each associated with the alignment of the rotor in one vibrational state. The authors construct the dressed potential associated with this mechanism. Values of detunings and field amplitudes are given to optimize the degree of alignment and orientation for the CO molecule.
Heterogeneous Interactions between Gas-Phase Pyruvic Acid and Hydroxylated Silica Surfaces: A Combined Experimental and Theoretical Study
2019
The adsorption of gas-phase pyruvic acid (CH3COCOOH) on hydroxylated silica particles has been investigated at 296 K using transmission Fourier transform infrared (FTIR) spectroscopy and theoretical simulations. Under dry conditions (<1% relative humidity, RH), both the trans-cis (Tc) and trans-trans (Tt) pyruvic acid conformers are observed on the surface as well as the (hydrogen bonded) pyruvic acid dimer. The detailed surface interactions were further understood through ab initio molecular dynamics simulations. Under higher relative humidity conditions (above 10% RH), adsorbed water competes for surface adsorption sites. Adsorbed water is also observed to change the relative populations …
Inelastic neutron scattering study of proton dynamics in Ca(OH)2 at 20 K
1995
Abstract Inelastic neutron scattering (INS) spectra of Ca(OH) 2 at 20 K are presented from 30 to 4000 cm −1 for a powder sample, from 30 to 12000 cm −1 for an oriented single-crystal. INS band splitting due to the lattice density-of-states is observed. Polarization effects reveal the orientation of atomic displacements for each mode and a new band assignment scheme is proposed. For the single-crystal, the v OH mode and overtones are observed. This oscillator shows only moderate anharmonicity. Spectrum simulation reveals that INS spectral intensities are not consistent with simple normal coordinates and harmonic force-fields for Ca(OH) 2 entities. A new dynamical model is proposed, including…
Dynamics of the excited-state hydrogen transfer in a (dG)·(dC) homopolymer: intrinsic photostability of DNA
2018
Multiscale molecular dynamics simulations reveal out-of-plane distortions that favour DNA photostability. A novel photostability mechanism involving four proton transfers and triggered by a nearby Na+ ion is also unveiled.
Exotic SiO(2)H(2) Isomers: Theory and Experiment Working in Harmony.
2016
Replacing carbon with silicon can result in dramatic and unanticipated changes in isomeric stability, as the well-studied CO2H2 and the essentially unknown SiO2H2 systems illustrate. Guided by coupled-cluster calculations, three SiO2H2 isomers have been detected and spectroscopically characterized in a molecular beam discharge source using rotational spectroscopy. The cis,trans conformer of dihydroxysilylene HOSiOH, the ground-state isomer, and the high-energy, metastable dioxasilirane c-H2SiO2 are abundantly produced in a dilute SiH4/O2 electrical discharge, enabling precise structural determinations of both by a combination of isotopic measurements and calculated vibrational corrections. …
APOGEE Data Releases 13 and 14: Data and Analysis
2018
Data and analysis methodology used for the SDSS/APOGEE Data Releases 13 and 14 are described, highlighting differences from the DR12 analysis presented in Holtzman (2015). Some improvement in the handling of telluric absorption and persistence is demonstrated. The derivation and calibration of stellar parameters, chemical abundances, and respective uncertainties are described, along with the ranges over which calibration was performed. Some known issues with the public data related to the calibration of the effective temperatures (DR13), surface gravity (DR13 and DR14), and C and N abundances for dwarfs (DR13 and DR14) are highlighted. We discuss how results from a data-driven technique, Th…
Supercontinuum generation in titanium dioxide waveguides
2019
International audience; Optical supercontinua are a fundamental topic that has stimulated a tremendous practical interest since the early works of Alfano et al. in the 70’s in bulk components. Photonic crystal fibers have then brought some remarkable potentialities in tailoring the dispersive properties of a waveguide while maintaining a high level of confinement over significant propagation distances. The next breakthrough is to further reduce the footprint of the nonlinear component and to achieve the generation of optical supercontinuum on a photonic chip. To reach this aim, several platforms have been successfully investigated such as silicon, silicon germanium, silicon nitride, chalcog…