Search results for "ISOSCALAR"
showing 10 items of 91 documents
(e,e'f) Coincidence experiments on 235U and 238U
1990
Abstract Coincidence experiments for (e, e'f) on the actinide nuclei 235 U and 238 U have been performed at the Mainz Microtron (MAMI A) concentrating on three subjects: multipole strength distributions and form factors for the lowest multipolarities, the mass split in the fission decay of various giant multipole resonances, and the separation of near barrier fission channels. Data were taken at four values of momentum transfer ( q eff ≈ 0.20, 0.28, 0.53, and 0.71 fm −1 for 238 U, q eff ≈ 0.20, 0.44, 0.57, and 0.71 fm −1 for 235 U) for excitation energies ω = 4–22 MeV. The fission fragments have been detected using the Giessen PPAC-Ball. A model-independent multipole analysis yields both fo…
Chiral symmetry amplitudes in the s-wave isoscalar and isovector channels and the $\sigma, f_0(980), a_0 (980)$ scalar mesons
1996
We use a nonpertubative approach which combines coupled channel Lippmann Schwinger equations with meson-meson potentials provided by the lowest order chiral Lagrangian. By means of one parameter, a cut off in the momentum of the loop integrals, which results of the order of 1 GeV, we obtain singularities in the S-wave amplitudes corresponding to the $\sigma$, f_0 and a_0 resonances. The $\pi \pi \to \pi \pi, \pi \pi \to K \bar{K}$ phase shifts and inelasticities in the T = 0 scalar channel are well reproduced as well as the $\pi^0 \eta$ and $K \bar{K}$ mass distributions in the T = 1 channel. Furthermore, the total and partial decay widths of the f_0 and a_0 resonances are properly reproduc…
The axial isoscalar neutral current from inelastic electron-nuclear scattering
1978
Abstract Parity violating effects due to neutral currents in isoscalar 0+→1+ nuclear transitions induced by electron scattering are enhanced owing to the small isoscalar magnetic dipole strength. A polarization asymmetry of the order 10−4 is expected at q ∼ 100 MeV for the 12C transition to the 1+(T = 0) state at 12.71 MeV. It would allow to single out the (electron vector current) × (hardonic axial isoscalar current) quantum numbers and couplings of the neutral current interaction.
General treatment of vortical, toroidal, and compression modes
2011
The multipole vortical, toroidal, and compression modes are analyzed. Following the vorticity concept of Ravenhall and Wambach, the vortical operator is derived and related in a simple way to the toroidal and compression operators. The strength functions and velocity fields of the modes are analyzed in $^{208}$Pb within the random-phase-approximation using the Skyrme force SLy6. Both convection and magnetization nuclear currents are taken into account. It is shown that the isoscalar (isovector) vortical and toroidal modes are dominated by the convection (magnetization) nuclear current while the compression mode is fully convective. The relation between the above concept of the vorticity to …
Searches for B0 decays to combinations of charmless isoscalar mesons
2004
We search for B meson decays into two-body combinations of eta, eta', omega, and phi mesons from 89 million B B-bar pairs collected with the BaBar detector at the PEP-II asymmetric-energy e+e- collider at SLAC. We find the branching fraction BF(B0 -> eta omega) = (4.0^{+1.3}_{-1.2} +- 0.4) x 10^-6 with a significance of 4.3 sigma. For all the other decay modes we set the following 90% confidence level upper limits on the branching fractions, in units of 10^-6 : BF(B0 -> eta eta)<2.8, BF(B0 -> eta eta')<4.6, BF(B0 -> eta' eta')<10, BF(B0 -> eta'omega)<2.8, BF(B0 -> eta phi)<1.0, BF(B0 -> eta' phi)<4.5, BF(B0 -> phi phi)<1.5.
Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV
2013
We extend to 10 GeV results from a microscopic calculation of charged-current neutrino-nucleus reactions that do not produce a pion in the final state. For the class of events coming from neutrino interactions with two nucleons producing two holes (2p2h), limiting the calculation to three-momentum transfers less than 1.2 GeV produces a two-dimensional distribution in momentum and energy transfer that is roughly constant as a function of energy. The cross section for 2p2h interactions approximately scales with the number of nucleons for isoscalar nuclei, similar to the quasi-elastic cross section. When limited to momentum transfers below 1.2 GeV, the cross section is 26% of the quasi-elastic…
Neutron-proton pairing in rotating N ∼ Z nuclei: dominance of the isovector component
2004
Theoretical calculations of rotating N ≈ Z nuclei with A = 58 − 80 within the cranked Nilsson+Strutinsky approach, cranked relativistic mean field and cranked relativistic Hartree+Bogoliubov theories show good agreement with experiment. They point on the presence of the isovector t = 1 np -pairing, but do not show any indications of the isoscalar t = 0 np -pairing.
Commutators of second-class axial currents with normal weak currents and consequences for particle decays
1981
Second-class weak axial currents are studied in the framework of normal weak and electromagnetic currents. Equal time commutators between normal and abnormal axial currents and the isoscalar electromagnetic current are postulated and their consequences are worked out. A number of predictions for masses, coupling constants and decay properties are derived and are compared to available data.
Nonquenched Isoscalar Spin-M1Excitations insd-Shell Nuclei
2015
Differential cross sections of isoscalar and isovector spin-M1 (0(+)→1(+)) transitions are measured using high-energy-resolution proton inelastic scattering at E(p)=295 MeV on (24)Mg, (28)Si, (32)S, and (36)Ar at 0°-14°. The squared spin-M1 nuclear transition matrix elements are deduced from the measured differential cross sections by applying empirically determined unit cross sections based on the assumption of isospin symmetry. The ratios of the squared nuclear matrix elements accumulated up to E(x)=16 MeV compared to a shell-model prediction are 1.01(9) for isoscalar and 0.61(6) for isovector spin-M1 transitions, respectively. Thus, no quenching is observed for isoscalar spin-M1 transi…
Roper excitation in alpha-proton scattering
1995
We study the Roper excitation in the $(\alpha,\alpha')$ reaction. We consider all processes which may be relevant in the Roper excitation region, namely, Roper excitation in the target, Roper excitation in the projectile, and double $\Delta$ excitation processes. The theoretical investigation shows that the Roper excitation in the proton target mediated by an isoscalar exchange is the dominant mechanism in the process. We determine an effective isoscalar interaction by means of which the experimental cross section is well reproduced. This should be useful to make predictions in related reactions and is a first step to construct eventually a microscopic $NN \rightarrow NN^*$ transition poten…