Search results for "Image Segmentation"
showing 10 items of 234 documents
Remote sensing image segmentation by active queries
2012
Active learning deals with developing methods that select examples that may express data characteristics in a compact way. For remote sensing image segmentation, the selected samples are the most informative pixels in the image so that classifiers trained with reduced active datasets become faster and more robust. Strategies for intelligent sampling have been proposed with model-based heuristics aiming at the search of the most informative pixels to optimize model's performance. Unlike standard methods that concentrate on model optimization, here we propose a method inspired in the cluster assumption that holds in most of the remote sensing data. Starting from a complete hierarchical descri…
Adaptive Bias Field Correction: Application on Abdominal MR Images
2017
Segmentation of medical images is one of the most important phases for disease diagnosis. Accuracy, robustness and stability of the results obtained by image segmentation is a major concern. Many segmentation methods rely on absolute values of intensity level, which are affected by a bias term due to in-homogeneous field in magnetic resonance images. The main objective of this paper is two folded: (1) To show efficiency of an energy minimization based approach, which uses intrinsic component optimization, on abdominal magnetic resonance images. (2) To propose an adaptive method to stop the optimization automatically. The proposed method can control the value of the energy functional and sto…
Evaluation of volumetric measurements on CBCT images using stafne bone cavities as an example
2015
Adisen, Mehmet Zahit/0000-0002-5493-8390; Yilmaz, Selmi/0000-0001-9546-6548; Yilmaz, Selmi/0000-0001-9546-6548; ATIL, Fethi/0000-0002-8286-4819 WOS: 000365269900009 PubMed: 26116844 Background: The aim of the present study is to evaluate the efficacy of CBCT in volume measuring using Stafne Bone Cavities (SBC) as an example. Material and Methods: The study was conducted with 14 subjects with SBC detected on panoramic radiographs. In order to evaluate lesions volumetric dimensions, CBCT images for each patient were captured. Files in Digital Imaging and Communications in Medicine (DICOM) format were transferred into a medical image processing program (ITK-SNAP 2.4.0) and volume in mm(3) of t…
Artificial intelligence for image-guided prostate brachytherapy procedures
2020
Radiotherapy procedures aim at exposing cancer cells to ionizing radiation. Permanently implanting radioactive sources near to the cancer cells is a typical technique to cure early-stage prostate cancer. It involves image acquisition of the patient, delineating the target volumes and organs at risk on different medical images, treatment planning, image-guided radioactive seed delivery, and post-implant evaluation. Artificial intelligence-based medical image analysis can benefit radiotherapy procedures. It can help to facilitate and improve the efficiency of the procedures by automatically segmenting target organs and extrapolating clinically relevant information. However, manual delineation…
Comparison of Micro X-ray Computer Tomography Image Segmentation Methods: Artificial Neural Networks Versus Least Square Support Vector Machine
2013
Micro X-ray computer tomography (XCT) is a powerful non-destructive method for obtaining information about rock structures and mineralogy. A new methodology to obtain porosity from 2D XCT digital images using artificial neural network and least square support vector machine is demonstrated following these steps: the XCT image was first preprocessed, thereafter clustering algorithms such as K-means, Fuzzy c-means and self-organized maps was used for image segmentation. Then artificial neural network was applied for image classification. For comparison, least square support vector machine approach was used for classification labeling of the scan images. The methodology shows how artificial ne…
Simultaneous segmentation and beam-hardening correction in computed microtomography of rock cores
2013
We propose a post-reconstruction correction procedure for the beam-hardening artifact that neither requires knowledge of the X-ray spectrum nor of the attenuation coefficients in multi-mineral geologic samples. The beam-hardening artifact in polychromatic X-ray computer tomography (CT) hampers segmentation of the phase assemblage in geologic samples. We show that in cylindrically shaped samples like rock cores, the X-ray attenuation value for a single phase depends mainly on the distance from the center of the cylinder. This relationship could be easily extracted from the CT data for every phase and used to infer the presence of these phases at all positions in the sample. Our new approach …
Distinguishing Onion Leaves from Weed Leaves Based on Segmentation of Color Images and a BP Neural Network
2006
A new algorithm to distinguish onion leaves from weed leaves in images is suggested. This algorithm is based on segmentation of color images and on BP neural network. It includes: discarding soil for conserving only plants in the image, color image segmentation, merging small regions by analyzing the frontier rates and the averages of color indices of the regions, at last a BP neural network is used to determine if the small regions belongs to onion leaf or not. The algorithm has been applied to many images and the correct identifiable percents for onion leaves are between 80%~ 90%.
Aplicación del Estimador de Parámetros de Segmentación por Media-desplazada (EPSM) a las imágenes de satélite de muy alta resolución espacial: Tetuán…
2015
<p>La segmentación de imágenes constituye un paso crucial en el Análisis de Imágenes Basado en Objetos (AIBO). Combinando distintos valores de los parámetros de entrada de los algoritmos de segmentación se obtienen diferentes resultados. En general, los parámetros óptimos seleccionados se determinan mediante interpretación visual; por lo tanto, la definición de las combinaciones óptimas es una tarea considerablemente difícil. En la presente investigación, se propone una herramienta analítica que denominamos Estimador de Parámetros de Segmentación por Media-desplazada (EPSM) aplicada a la selección automatizada de los valores de los parámetros de segmentación en las imágenes de satélit…
Computation of the area in the discrete plane: Green’s theorem revisited
2017
International audience; The detection of the contour of a binary object is a common problem; however, the area of a region, and its moments, can be a significant parameter. In several metrology applications, the area of planar objects must be measured. The area is obtained by counting the pixels inside the contour or using a discrete version of Green's formula. Unfortunately, we obtain the area enclosed by the polygonal line passing through the centers of the pixels along the contour. We present a modified version of Green's theorem in the discrete plane, which allows for the computation of the exact area of a two-dimensional region in the class of polyominoes. Penalties are introduced and …
Dissimilarity Application for Medical Imaging Classification
2005
In the traditional way of learning from examples of objects the classifiers are built in a feature space. However, alternative ways can be found by constructing decision rules on dissimilarity (distance) representations. In such a recognition process a new object is described by its distances to (a subset of) die training samples. The use of the dissimilarities is especially of interest when features are difficult to obtain or when they have a little discriminative power. Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 col…