Search results for "Image Segmentation"
showing 10 items of 234 documents
Hidden Markov Random Field model and BFGS algorithm for Brain Image Segmentation
2016
Brain MR images segmentation has attracted a particular focus in medical imaging. The automatic image analysis and interpretation became a necessity. Segmentation is one of the key operations to provide a crucial decision support to physicians. Its goal is to simplify the representation of an image into items meaningful and easier to analyze. Hidden Markov Random Fields (HMRF) provide an elegant way to model the segmentation problem. This model leads to the minimization problem of a function. BFGS (Broyden-Fletcher-Goldfarb-Shanno algorithm) is one of the most powerful methods to solve unconstrained optimization problem. This paper presents how we combine HMRF and BFGS to achieve a good seg…
Automatic detection of cervical cells in Pap-smear images using polar transform and k-means segmentation
2016
We introduce a novel method of cell detection and segmentation based on a polar transformation. The method assumes that the seed point of each candidate is placed inside the nucleus. The polar representation, built around the seed, is segmented using k-means clustering into one candidate-nucleus cluster, one candidate-cytoplasm cluster and up to three miscellaneous clusters, representing background or surrounding objects that are not part of the candidate cell. For assessing the natural number of clusters, the silhouette method is used. In the segmented polar representation, a number of parameters can be conveniently observed and evaluated as fuzzy memberships to the non-cell class, out of …
A hardware skin-segmentation IP for vision based smart ADAS through an FPGA prototyping
2017
International audience; In this paper we presents a platform based design approach for fast HW/SW embedded smart Advanced Driver Assistant System (ADAS) design and prototyping. Then, we share our experience in designing and prototyping a HW/SW vision based smart embedded system as an ADAS that helps to increase the safety of car's drivers. We present a physical prototype of the vision ADAS based on a Zynq FPGA. The system detects the fatigue state of the driver by monitoring the eyes closure and generates a real-time alert. A new HW/SW codesign skin segmentation step to locate the eyes/face is proposed. Our presented new approach migrates the skin segmentation step from processing system (S…
Implementation and evaluation of medical imaging techniques based on conformal geometric algebra
2020
Medical imaging tasks, such as segmentation, 3D modeling, and registration of medical images, involve complex geometric problems, usually solved by standard linear algebra and matrix calculations. In the last few decades, conformal geometric algebra (CGA) has emerged as a new approach to geometric computing that offers a simple and efficient representation of geometric objects and transformations. However, the practical use of CGA-based methods for big data image processing in medical imaging requires fast and efficient implementations of CGA operations to meet both real-time processing constraints and accuracy requirements. The purpose of this study is to present a novel implementation of …
AUTOMATIC RETINA EXUDATES SEGMENTATION WITHOUT A MANUALLY LABELLED TRAINING SET
2011
International audience; Diabetic macular edema (DME) is a common vision threatening complication of diabetic retinopathy. In a large scale screening environment DME can be assessed by detecting exudates (a type of bright lesions) in fundus images. In this work, two new methods for the detection of exudates are presented. The methods do not require a lesion training set so the need to ground-truth data is avoided with significant time savings and independence from human error. We evaluate our algorithm with a new publicly available dataset from various ethnic groups and levels of DME. Also, we compare our results with two recent exudate segmentation algorithms on the same dataset. In all of …
Zero-shot Semantic Segmentation using Relation Network
2021
Zero-shot learning (ZSL) is widely studied in recent years to solve the problem of lacking annotations. Currently, most studies on ZSL are for image classification and object detection. But, zero-shot semantic segmentation, pixel level classification, is still at its early stage. Therefore, this work proposes to extend a zero-shot image classification model, Relation Network (RN), to semantic segmentation tasks. We modified the structure of RN based on other state-of-the-arts semantic segmentation models (i.e. U-Net and DeepLab) and utilizes word embeddings from Caltech-UCSD Birds 200-2011 attributes and natural language processing models (i.e. word2vec and fastText). Because meta-learning …
Space-Frequency Quantization for Image Compression With Directionlets
2007
The standard separable 2-D wavelet transform (WT) has recently achieved a great success in image processing because it provides a sparse representation of smooth images. However, it fails to efficiently capture 1-D discontinuities, like edges or contours. These features, being elongated and characterized by geometrical regularity along different directions, intersect and generate many large magnitude wavelet coefficients. Since contours are very important elements in the visual perception of images, to provide a good visual quality of compressed images, it is fundamental to preserve good reconstruction of these directional features. In our previous work, we proposed a construction of critic…
Image Segmentation Techniques for Healthcare Systems
2019
The present special issue of the Journal of Healthcare Engineering collects articles written by researchers scattered around the world who belong to the academic and industrial environments. The papers of this special issue have been selected by a rigorous peer-reviewing process with the support of at least two reviewers per paper, along with the opinion written in the final decision by a component of the editorial staff. Different methods on biomedical image segmentation dedicated to healthcare systems have been developed regarding, for example, the fields of machine learning, deformable models, fuzzy models, and so on. Such methods have been applied on different biomedical image modalitie…
What makes segmentation good? A case study in boreal forest habitat mapping
2013
Segmentation goodness evaluation is a set of approaches meant for deciding which segmentation is good. In this study, we tested different supervised segmentation evaluation measures and visual interpretation in the case of boreal forest habitat mapping in Southern Finland. The data used were WorldView-2 satellite imagery, a lidar digital elevation model (DEM), and a canopy height model (CHM) in 2 m resolution. The segmentation methods tested were the fractal net evolution approach (FNEA) and IDRISI watershed segmentation. Overall, 252 different segmentation methods, layers, and parameter combinations were tested. We also used eight different habitat delineations as reference polygons agains…
Automated approach for indirect immunofluorescence images classification based on unsupervised clustering method
2018
Autoimmune diseases (ADs) are a collection of many complex disorders of unknown aetiology resulting in immune responses to self-antigens and are thought to result from interactions between genetic and environmental factors. ADs collectively are amongst the most prevalent diseases in the U.S., affecting at least 7% of the population. The diagnosis of ADs is very complex, the standard screening methods provides seeking and recognizing of Antinuclear Antibodies (ANA) by Indirect ImmunoFluorescence (IIF) based on HEp-2 cells. In this paper an automatic system able to identify and classify the Centromere pattern is presented. The method is based on the grouping of centromeres present on the cell…