Search results for "Image classification"

showing 10 items of 114 documents

Multiset Kernel CCA for multitemporal image classification

2013

The analysis of multitemporal remote sensing images is becoming an increasingly important problem because of the upcoming scenario of multispectral satellite constellations monitoring our Planet. Algorithms that can analyze such amount of heterogeneous information are necessary. While linear techniques have been extensively deployed, this work considers a kernel method that finds nonlinear correlations between all image sources and the class labels. We introduce in this context the Kernel Canonical Correlation Analysis (KCCA) to exploit the wealth of temporal image information and to handle nonlinear relations in a natural way via kernels. To achieve this goal, we use the generalization of …

MultisetContextual image classificationbusiness.industryMultispectral imagePattern recognitionSupport vector machineNonlinear systemKernel methodKernel (image processing)Artificial intelligenceTime seriesbusinessMathematicsRemote sensingMultiTemp 2013: 7th International Workshop on the Analysis of Multi-temporal Remote Sensing Images
researchProduct

A Comparative Analysis of Residual Block Alternatives for End-to-End Audio Classification

2020

Residual learning is known for being a learning framework that facilitates the training of very deep neural networks. Residual blocks or units are made up of a set of stacked layers, where the inputs are added back to their outputs with the aim of creating identity mappings. In practice, such identity mappings are accomplished by means of the so-called skip or shortcut connections. However, multiple implementation alternatives arise with respect to where such skip connections are applied within the set of stacked layers making up a residual block. While residual networks for image classification using convolutional neural networks (CNNs) have been widely discussed in the literature, their a…

Normalization (statistics)General Computer ScienceComputer scienceFeature extractionESC02 engineering and technologycomputer.software_genreResidualConvolutional neural networkconvolutional neural networks0202 electrical engineering electronic engineering information engineeringGeneral Materials Scienceurbansound8kAudio signal processingBlock (data storage)Contextual image classificationGeneral EngineeringAudio classification020206 networking & telecommunications113 Computer and information sciences020201 artificial intelligence & image processinglcsh:Electrical engineering. Electronics. Nuclear engineeringData mininglcsh:TK1-9971computerresidual learningIEEE Access
researchProduct

Multilabel segmentation of cancer cell culture on vascular structures with deep neural networks

2020

New increasingly complex in vitro cancer cell models are being developed. These new models seem to represent the cell behavior in vivo more accurately and have better physiological relevance than prior models. An efficient testing method for selecting the most optimal drug treatment does not exist to date. One proposed solution to the problem involves isolation of cancer cells from the patients' cancer tissue, after which they are exposed to potential drugs alone or in combinations to find the most optimal medication. To achieve this goal, methods that can efficiently quantify and analyze changes in tested cell are needed. Our study aimed to detect and segment cells and structures from canc…

Paperneural networkImage Processing3122 CancersComputational biologyneuroverkotmikroskopia030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineIn vivoLNCaPmedicinecancerRadiology Nuclear Medicine and imagingSegmentationErrataContextual image classificationbusiness.industrysegmentationCancerin vitroImage segmentationmedicine.diseasesoluviljelysegmentointisyöpäsolutkuvantaminenin vitro -menetelmäCell culture030220 oncology & carcinogenesisCancer cellmicroscopy3111 Biomedicinebusiness
researchProduct

Shape Description for Content-Based Image Retrieval

2000

The present work is focused on a global image characterization based on a description of the 2D displacements of the different shapes present in the image, which can be employed for CBIR applications.To this aim, a recognition system has been developed, that detects automatically image ROIs containing single objects, and classifies them as belonging to a particular class of shapes.In our approach we make use of the eigenvalues of the covariance matrix computed from the pixel rows of a single ROI. These quantities are arranged in a vector form, and are classified using Support Vector Machines (SVMs). The selected feature allows us to recognize shapes in a robust fashion, despite rotations or…

PixelContextual image classificationbusiness.industryComputer scienceCovariance matrixComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processingPattern recognitionContent-based image retrievalSupport vector machineComputingMethodologies_PATTERNRECOGNITIONFeature (computer vision)Computer Science::Computer Vision and Pattern RecognitionPattern recognition (psychology)Computer visionArtificial intelligencebusiness
researchProduct

Cluster kernels for semisupervised classification of VHR urban images

2009

In this paper, we present and apply a semisupervised support vector machine based on cluster kernels for the problem of very high resolution image classification. In the proposed setting, a base kernel working with labeled samples only is deformed by a likelihood kernel encoding similarities between unlabeled examples. The resulting kernel is used to train a standard support vector machine (SVM) classifier. Experiments carried out on very high resolution (VHR) multispectral and hyperspectral images using very few labeled examples show the relevancy of the method in the context of urban image classification. Its simplicity and the small number of parameters involved make it versatile and wor…

PixelContextual image classificationbusiness.industryMultispectral imageComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONHyperspectral imagingProbability density functionPattern recognitionSupport vector machineComputingMethodologies_PATTERNRECOGNITIONComputer Science::Computer Vision and Pattern RecognitionRadial basis function kernelArtificial intelligencebusinessClassifier (UML)Mathematics2009 Joint Urban Remote Sensing Event
researchProduct

Dataset shift adaptation with active queries

2011

In remote sensing image classification, it is commonly assumed that the distribution of the classes is stable over the entire image. This way, training pixels labeled by photointerpretation are assumed to be representative of the whole image. However, differences in distribution of the classes throughout the image make this assumption weak and a model built on a single area may be suboptimal when applied to the rest of the image. In this paper, we investigate the use of active learning to correct the shifts that may appear when training and test data do not come from the same distribution. Experiments are carried out on a VHR remote sensing classification scenario showing that active learni…

Rest (physics)PixelContextual image classificationComputer scienceActive learning (machine learning)Life ScienceData miningCovariancecomputer.software_genrecomputerTest dataImage (mathematics)Data modeling
researchProduct

Microaneurysm detection with radon transform-based classification on retina images.

2012

The creation of an automatic diabetic retinopathy screening system using retina cameras is currently receiving considerable interest in the medical imaging community. The detection of microaneurysms is a key element in this effort. In this work, we propose a new microaneurysms segmentation technique based on a novel application of the radon transform, which is able to identify these lesions without any previous knowledge of the retina morphological features and with minimal image preprocessing. The algorithm has been evaluated on the Retinopathy Online Challenge public dataset, and its performance compares with the best current techniques. The performance is particularly good at low false p…

Retinal ArteryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONSensitivity and SpecificityPattern Recognition AutomatedImage Interpretation Computer-AssistedmedicineMedical imagingPreprocessorHumansSegmentationComputer visionMicroaneurysmDiabetic RetinopathyContextual image classificationRadon transformbusiness.industryReproducibility of ResultsImage segmentationmedicine.diseaseImage EnhancementAneurysmArtificial intelligencebusinessAlgorithmsRetinopathyRetinoscopy
researchProduct

Using active learning to adapt remote sensing image classifiers

2011

The validity of training samples collected in field campaigns is crucial for the success of land use classification models. However, such samples often suffer from a sample selection bias and do not represent the variability of spectra that can be encountered in the entire image. Therefore, to maximize classification performance, one must perform adaptation of the first model to the new data distribution. In this paper, we propose to perform adaptation by sampling new training examples in unknown areas of the image. Our goal is to select these pixels in an intelligent fashion that minimizes their number and maximizes their information content. Two strategies based on uncertainty and cluster…

Selection biasActive learningCovariate shiftPixelContextual image classificationComputer scienceImage classificationmedia_common.quotation_subjectSoil ScienceHyperspectral imagingGeologyMaximizationLand coverRemote sensingHyperspectralVHRComputers in Earth SciencesCluster analysisClassifier (UML)Remote sensingmedia_common
researchProduct

Texture classification for content-based image retrieval

2002

An original approach to texture-based classification of regions, for image indexing and retrieval, is presented. The system addresses automatic macro-textured ROI detection, and classification: we focus our attention on those objects that can be characterized by a texture as a whole, like trees, flowers, walls, clouds, and so on. The proposed architecture is based on the computation of the /spl lambda/ vector from each selected region, and classification of this feature by means of a pool of suitably trained support vector machines (SVM). This approach is an extension of the one previously developed by some of the authors to classify image regions on the basis of the geometrical shape of th…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniContextual image classificationComputer sciencebusiness.industryFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPattern recognitionImage segmentationContent-based image retrievalCBIR texture analysisObject detectionImage textureFeature (computer vision)Computer visionArtificial intelligencebusinessImage retrievalProceedings 11th International Conference on Image Analysis and Processing
researchProduct

A Conceptual Probabilistic Model for the Induction of Image Semantics

2010

In this paper we propose a model based on a conceptual space automatically induced from data. The model is inspired to a well-founded robotics cognitive architecture which is organized in three computational areas: sub-conceptual, linguistic and conceptual. Images are objects in the sub-conceptual area, that become "knoxels" into the conceptual area. The application of the framework grants the automatic emerging of image semantics into the linguistic area. The core of the model is a conceptual space induced automatically from a set of annotated images that exploits and mixes different information concerning the set of images. Multiple low level features are extracted to represent images and…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniImage ClassificationComputer sciencebusiness.industryFeature extractionimage semantics conceptual spaceConceptual model (computer science)Statistical modelcomputer.software_genreConceptual schemaVisualizationSet (abstract data type)Data setAutomatic image annotationLatent Semantic AnalysisArtificial intelligencebusinesscomputerNatural language processing
researchProduct