Search results for "Image segmentation"
showing 10 items of 234 documents
COMPARISON OF TWO SIMPLIFICATION METHODS FOR SHORELINE EXTRACTION FROM DIGITAL ORTHOPHOTO IMAGES
2018
Abstract. The coastal ecosystems are very sensitive to external influences. Coastal resources such as sand dunes, coral reefs and mangroves has vital importance to prevent coastal erosion. Human based effects also threats the coastal areas. Therefore, the change of coastal areas should be monitored. Up-to-date, accurate shoreline information is indispensable for coastal managers and decision makers. Remote sensing and image processing techniques give a big opportunity to obtain reliable shoreline information. In the presented study, NIR bands of seven 1:5000 scaled digital orthophoto images of Riga Bay-Latvia have been used. The Object-oriented Simple Linear Clustering method has been utili…
Adaptive Techniques for Microarray Image Analysis with Related Quality Assessment
2007
We propose novel techniques for microarray image analysis. In particular, we describe an overall pipeline able to solve the most common problems of microarray image analysis. We pro- pose the microarray image rotation algorithm (MIRA) and the statis- tical gridding pipeline (SGRIP) as two advanced modules devoted to restoring the original microarray grid orientation and to detecting, the correct geometrical information about each spot of input mi- croarray, respectively. Both solutions work by making use of statis- tical observations, obtaining adaptive and reliable information about each spot property. They improve the performance of the microarray image segmentation pipeline (MISP) we rec…
Anam-Net: Anamorphic Depth Embedding-Based Lightweight CNN for Segmentation of Anomalies in COVID-19 Chest CT Images.
2021
Chest computed tomography (CT) imaging has become indispensable for staging and managing coronavirus disease 2019 (COVID-19), and current evaluation of anomalies/abnormalities associated with COVID-19 has been performed majorly by the visual score. The development of automated methods for quantifying COVID-19 abnormalities in these CT images is invaluable to clinicians. The hallmark of COVID-19 in chest CT images is the presence of ground-glass opacities in the lung region, which are tedious to segment manually. We propose anamorphic depth embedding-based lightweight CNN, called Anam-Net, to segment anomalies in COVID-19 chest CT images. The proposed Anam-Net has 7.8 times fewer parameters …
A Coupled Schema of Probabilistic Atlas and Statistical Shape and Appearance Model for 3D Prostate Segmentation in MR Images
2012
International audience; A hybrid framework of probabilistic atlas and statistical shape and appearance model (SSAM) is proposed to achieve 3D prostate segmentation. An initial 3D segmentation of the prostate is obtained by registering the probabilistic atlas to the test dataset with deformable Demons registration. The initial results obtained are used to initialize multiple SSAMs corresponding to the apex, central and base regions of the prostate gland to incorporate local variabilities. Multiple mean parametric models of shape and appearance are derived from principal component analysis of prior shape and intensity information of the prostate from the training data. The parameters are then…
Trademarks recognition based on local regions similarities
2010
This paper deals with content based image retrieval. We propose a logo recognition algorithm based on local regions, where the trademark (or logo) image is segmented by the clustering of points of interest obtained by Harris corners detector. The minimum rectangle surrounding each cluster is detected forming the regions of interest. Global features such as Hu moments and histograms of each local region are combined to find similar logos in the database. Similarity is measured based on the integrated minimum average distance of the individual components. The results obtained demonstrate tolerance to logos distortions such as rotation, occlusion and noise.
Artificial Vision and Soft Computing
1999
The term soft-computing has been introduced by Zadeh in 1994. Soft-computing provides an appropriate paradigm to program malleable and smooth concepts. For example, it can be used to introduce flexibility in artificial systems to improve their Intelligent Quotient. The aim of this paper is to describe the applicability of soft-computing to artificial vision problems. Good performance of this approach is assured by the fact that digital images are examples of fuzzy entities, where shapes are not always describable by exact equations and their approximation can be very complex.
Simplified spiking neural network architecture and STDP learning algorithm applied to image classification
2015
Spiking neural networks (SNN) have gained popularity in embedded applications such as robotics and computer vision. The main advantages of SNN are the temporal plasticity, ease of use in neural interface circuits and reduced computation complexity. SNN have been successfully used for image classification. They provide a model for the mammalian visual cortex, image segmentation and pattern recognition. Different spiking neuron mathematical models exist, but their computational complexity makes them ill-suited for hardware implementation. In this paper, a novel, simplified and computationally efficient model of spike response model (SRM) neuron with spike-time dependent plasticity (STDP) lear…
Distance-based functions for image comparison
1999
The interest in digital image comparison is steadily growing in the computer vision community. The definition of a suitable comparison measure for non-binary images is relevant in many image processing applications. Visual tasks like segmentation and classification require the evaluation of equivalence classes. Measures of similarity are also used to evaluate lossy compression algorithms and to define pictorial indices in image content based retrieval methods. In this paper we develop a distance-based approach to image similarity evaluation and we present several image distances which are based on low level features. The sensitivity and eAectiveness are tested on real data. ” 1999 Published…
Registration and fusion of segmented left atrium CT images with CARTO electrical maps for the ablative treatment of atrial fibrillation
2005
This study aims to extract the interior surface of the left atrium (LA) and pulmonary veins (PVs) from threedimensional tomographic data and to integrate it with LA CARTO electrical maps. The separation of LA and PVs from other overlapping structures of the heart was performed processing 3D CT data by marker-controlled watershed segmentation and surface extraction. CARTO maps were then registered on the L A internal surface by a stochastic optimization algorithm based on simulated annealing. The residual registration error resulted inferior to 3 mm. The integration between electrophysiological and high resolved anatomic information of LA results feasible and may constitute a significant sup…
Including invariances in SVM remote sensing image classification
2012
This paper introduces a simple method to include invariances in support vector machine (SVM) for remote sensing image classification. We rely on the concept of virtual support vectors, by which the SVM is trained with both the selected support vectors and synthetic examples encoding the invariance of interest. The algorithm is very simple and effective, as demonstrated in two particularly interesting examples: invariance to the presence of shadows and to rotations in patchbased image segmentation. The improved accuracy (around +6% both in OA and Cohen's κ statistic), along with the simplicity of the approach encourage its use and extension to encode other invariances and other remote sensin…