Search results for "Image segmentation"

showing 10 items of 234 documents

COMPARISON OF TWO SIMPLIFICATION METHODS FOR SHORELINE EXTRACTION FROM DIGITAL ORTHOPHOTO IMAGES

2018

Abstract. The coastal ecosystems are very sensitive to external influences. Coastal resources such as sand dunes, coral reefs and mangroves has vital importance to prevent coastal erosion. Human based effects also threats the coastal areas. Therefore, the change of coastal areas should be monitored. Up-to-date, accurate shoreline information is indispensable for coastal managers and decision makers. Remote sensing and image processing techniques give a big opportunity to obtain reliable shoreline information. In the presented study, NIR bands of seven 1:5000 scaled digital orthophoto images of Riga Bay-Latvia have been used. The Object-oriented Simple Linear Clustering method has been utili…

Shorelcsh:Applied optics. Photonicsgeographygeography.geographical_feature_category010504 meteorology & atmospheric scienceslcsh:TReference data (financial markets)Orthophotolcsh:TA1501-1820Image processingImage segmentation010502 geochemistry & geophysics01 natural scienceslcsh:TechnologySand dune stabilizationCoastal erosionlcsh:TA1-2040Cluster analysislcsh:Engineering (General). Civil engineering (General)CartographyGeology0105 earth and related environmental sciencesRemote sensingISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
researchProduct

Adaptive Techniques for Microarray Image Analysis with Related Quality Assessment

2007

We propose novel techniques for microarray image analysis. In particular, we describe an overall pipeline able to solve the most common problems of microarray image analysis. We pro- pose the microarray image rotation algorithm (MIRA) and the statis- tical gridding pipeline (SGRIP) as two advanced modules devoted to restoring the original microarray grid orientation and to detecting, the correct geometrical information about each spot of input mi- croarray, respectively. Both solutions work by making use of statis- tical observations, obtaining adaptive and reliable information about each spot property. They improve the performance of the microarray image segmentation pipeline (MISP) we rec…

Signal processingComputer scienceImage qualityPipeline (computing)Image processingImage segmentationcomputer.software_genreAtomic and Molecular Physics and OpticsComputer Science ApplicationsVisualizationmicroarray image analysisBinary dataSegmentationData miningElectrical and Electronic Engineeringcomputer
researchProduct

Anam-Net: Anamorphic Depth Embedding-Based Lightweight CNN for Segmentation of Anomalies in COVID-19 Chest CT Images.

2021

Chest computed tomography (CT) imaging has become indispensable for staging and managing coronavirus disease 2019 (COVID-19), and current evaluation of anomalies/abnormalities associated with COVID-19 has been performed majorly by the visual score. The development of automated methods for quantifying COVID-19 abnormalities in these CT images is invaluable to clinicians. The hallmark of COVID-19 in chest CT images is the presence of ground-glass opacities in the lung region, which are tedious to segment manually. We propose anamorphic depth embedding-based lightweight CNN, called Anam-Net, to segment anomalies in COVID-19 chest CT images. The proposed Anam-Net has 7.8 times fewer parameters …

Similarity (geometry)Coronavirus disease 2019 (COVID-19)Computer Networks and CommunicationsComputer scienceComputed tomography02 engineering and technologyDeep LearningArtificial Intelligence0202 electrical engineering electronic engineering information engineeringMedical imagingmedicineImage Processing Computer-AssistedHumansSegmentationComputer visionLung regionLungmedicine.diagnostic_testbusiness.industryDeep learningVDP::Technology: 500COVID-19Image segmentationComputer Science ApplicationsEmbedding020201 artificial intelligence & image processingArtificial intelligenceNeural Networks ComputerbusinessTomography X-Ray ComputedSoftwareIEEE transactions on neural networks and learning systems
researchProduct

A Coupled Schema of Probabilistic Atlas and Statistical Shape and Appearance Model for 3D Prostate Segmentation in MR Images

2012

International audience; A hybrid framework of probabilistic atlas and statistical shape and appearance model (SSAM) is proposed to achieve 3D prostate segmentation. An initial 3D segmentation of the prostate is obtained by registering the probabilistic atlas to the test dataset with deformable Demons registration. The initial results obtained are used to initialize multiple SSAMs corresponding to the apex, central and base regions of the prostate gland to incorporate local variabilities. Multiple mean parametric models of shape and appearance are derived from principal component analysis of prior shape and intensity information of the prostate from the training data. The parameters are then…

Similarity (geometry)[ INFO.INFO-IM ] Computer Science [cs]/Medical ImagingSegmentation-based object categorizationbusiness.industry[INFO.INFO-IM] Computer Science [cs]/Medical ImagingImage registrationScale-space segmentationPattern recognition02 engineering and technologyImage segmentation030218 nuclear medicine & medical imagingActive appearance model03 medical and health sciences0302 clinical medicineHausdorff distance0202 electrical engineering electronic engineering information engineering[INFO.INFO-IM]Computer Science [cs]/Medical Imaging020201 artificial intelligence & image processingSegmentationComputer visionArtificial intelligencebusinessMathematics
researchProduct

Trademarks recognition based on local regions similarities

2010

This paper deals with content based image retrieval. We propose a logo recognition algorithm based on local regions, where the trademark (or logo) image is segmented by the clustering of points of interest obtained by Harris corners detector. The minimum rectangle surrounding each cluster is detected forming the regions of interest. Global features such as Hu moments and histograms of each local region are combined to find similar logos in the database. Similarity is measured based on the integrated minimum average distance of the individual components. The results obtained demonstrate tolerance to logos distortions such as rotation, occlusion and noise.

Similarity (geometry)business.industryComputer scienceMathematics::History and OverviewComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONCorner detectionPattern recognitionImage segmentationContent-based image retrievalEdge detectionComputingMethodologies_PATTERNRECOGNITIONComputer Science::Computer Vision and Pattern RecognitionPattern recognition (psychology)Computer visionArtificial intelligencebusinessCluster analysisImage retrieval10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010)
researchProduct

Artificial Vision and Soft Computing

1999

The term soft-computing has been introduced by Zadeh in 1994. Soft-computing provides an appropriate paradigm to program malleable and smooth concepts. For example, it can be used to introduce flexibility in artificial systems to improve their Intelligent Quotient. The aim of this paper is to describe the applicability of soft-computing to artificial vision problems. Good performance of this approach is assured by the fact that digital images are examples of fuzzy entities, where shapes are not always describable by exact equations and their approximation can be very complex.

Soft computingFlexibility (engineering)Algebra and Number TheoryComputer sciencebusiness.industryFuzzy setExact differential equationImage segmentationFuzzy logicTheoretical Computer ScienceTerm (time)Computational Theory and MathematicsArtificial intelligencebusinessInformation SystemsFundamenta Informaticae
researchProduct

Simplified spiking neural network architecture and STDP learning algorithm applied to image classification

2015

Spiking neural networks (SNN) have gained popularity in embedded applications such as robotics and computer vision. The main advantages of SNN are the temporal plasticity, ease of use in neural interface circuits and reduced computation complexity. SNN have been successfully used for image classification. They provide a model for the mammalian visual cortex, image segmentation and pattern recognition. Different spiking neuron mathematical models exist, but their computational complexity makes them ill-suited for hardware implementation. In this paper, a novel, simplified and computationally efficient model of spike response model (SRM) neuron with spike-time dependent plasticity (STDP) lear…

Spiking neural networkQuantitative Biology::Neurons and CognitionComputational complexity theoryContextual image classificationComputer sciencebusiness.industryImage segmentationNetwork topologyExternal Data RepresentationSignal ProcessingArtificial neuronArtificial intelligenceElectrical and Electronic EngineeringbusinessInformation SystemsBrain–computer interfaceEURASIP Journal on Image and Video Processing
researchProduct

Distance-based functions for image comparison

1999

The interest in digital image comparison is steadily growing in the computer vision community. The definition of a suitable comparison measure for non-binary images is relevant in many image processing applications. Visual tasks like segmentation and classification require the evaluation of equivalence classes. Measures of similarity are also used to evaluate lossy compression algorithms and to define pictorial indices in image content based retrieval methods. In this paper we develop a distance-based approach to image similarity evaluation and we present several image distances which are based on low level features. The sensitivity and eAectiveness are tested on real data. ” 1999 Published…

Standard test imagebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processingPattern recognitionImage segmentationAutomatic image annotationImage textureArtificial IntelligenceSignal ProcessingDigital image processingComputer visionComputer Vision and Pattern RecognitionArtificial intelligencebusinessImage retrievalSoftwareMathematicsFeature detection (computer vision)Pattern Recognition Letters
researchProduct

Registration and fusion of segmented left atrium CT images with CARTO electrical maps for the ablative treatment of atrial fibrillation

2005

This study aims to extract the interior surface of the left atrium (LA) and pulmonary veins (PVs) from threedimensional tomographic data and to integrate it with LA CARTO electrical maps. The separation of LA and PVs from other overlapping structures of the heart was performed processing 3D CT data by marker-controlled watershed segmentation and surface extraction. CARTO maps were then registered on the L A internal surface by a stochastic optimization algorithm based on simulated annealing. The residual registration error resulted inferior to 3 mm. The integration between electrophysiological and high resolved anatomic information of LA results feasible and may constitute a significant sup…

Stochastic optimization algorithmmedicine.medical_specialtybusiness.industryLeft atriumImage registrationAtrial fibrillationImage segmentationmedicine.diseasemedicine.anatomical_structureAblative caseSettore ING-INF/06 - Bioingegneria Elettronica E Informaticacardiovascular systemmedicineRadiologyOverlapping structuresbusinessCardiology and Cardiovascular MedicineSoftwareBiomedical engineering
researchProduct

Including invariances in SVM remote sensing image classification

2012

This paper introduces a simple method to include invariances in support vector machine (SVM) for remote sensing image classification. We rely on the concept of virtual support vectors, by which the SVM is trained with both the selected support vectors and synthetic examples encoding the invariance of interest. The algorithm is very simple and effective, as demonstrated in two particularly interesting examples: invariance to the presence of shadows and to rotations in patchbased image segmentation. The improved accuracy (around +6% both in OA and Cohen's κ statistic), along with the simplicity of the approach encourage its use and extension to encode other invariances and other remote sensin…

Structured support vector machineContextual image classificationbusiness.industryPattern recognitionImage segmentationENCODESupport vector machineSimple (abstract algebra)Encoding (memory)Computer visionArtificial intelligencebusinessStatisticRemote sensingMathematics2012 IEEE International Geoscience and Remote Sensing Symposium
researchProduct