Search results for "Imidazopyridine"
showing 3 items of 3 documents
Structural Determinants for the Mode of Action of Imidazopyridine DS2 at δ-Containing γ-Aminobutyric Acid Type A Receptors
2021
Despite the therapeutic relevance of δ-containing γ-aminobutyric acid type A receptors (GABAARs) and the need for δ-selective compounds, the structural determinants for the mode and molecular site of action of δ-selective positive allosteric modulator imidazo[1,2-a]pyridine DS2 remain elusive. To guide the quest for insight, we synthesized a series of DS2 analogues guided by a structural receptor model. Using a fluorescence-based fluorometric imaging plate reader membrane potential assay, we found that the δ-selectivity and the pharmacological profile are severely affected by substituents in the 5-position of the imidazopyridine core scaffold. Interestingly, the 5-methyl, 5-bromo, and 5-chl…
Inhibition of the Cysteine Protease Human Cathepsin L by Triazine Nitriles: Amide⋅⋅⋅Heteroarene π-Stacking Interactions and Chalcogen Bonding in the …
2016
We report an extensive "heteroarene scan" of triazine nitrile ligands of the cysteine protease human cathepsin L (hCatL) to investigate π-stacking on the peptide amide bond Gly67-Gly68 at the entrance of the S3 pocket. This heteroarene⋅⋅⋅peptide bond stacking was supported by a co-crystal structure of an imidazopyridine ligand with hCatL. Inhibitory constants (Ki ) are strongly influenced by the diverse nature of the heterocycles and specific interactions with the local environment of the S3 pocket. Binding affinities vary by three orders of magnitude. All heteroaromatic ligands feature enhanced binding by comparison with hydrocarbon analogues. Predicted energetic contributions from the ori…
Optimization of Triazine Nitriles as Rhodesain Inhibitors: Structure-Activity Relationships, Bioisosteric Imidazopyridine Nitriles, and X-ray Crystal…
2013
The cysteine protease rhodesain of Trypanosoma brucei parasites causing African sleeping sickness has emerged as a target for the development of new drug candidates. Based on a triazine nitrile moiety as electrophilic headgroup, optimization studies on the substituents for the S1, S2, and S3 pockets of the enzyme were performed using structure-based design and resulted in inhibitors with inhibition constants in the single-digit nanomolar range. Comprehensive structure-activity relationships clarified the binding preferences of the individual pockets of the active site. The S1 pocket tolerates various substituents with a preference for flexible and basic side chains. Variation of the S2 subs…