Search results for "InAs"

showing 10 items of 4155 documents

Phosphoproteins Involved in the Signal Transduction of Cryptogein, an Elicitor of Defense Reactions in Tobacco

2000

We previously reported that the signal transduction of cryptogein, an elicitor of defense reactions in Nicotiana tabacum cells, involves upstream protein phosphorylation. In the present study, induction of these early physiological events was further investigated with inhibitors of protein phosphatase (PP), okadaïc acid, and calyculin A. Calyculin A mimicked the effects of cryptogein, inducing an influx of calcium, an extracellular alkalinization, and the production of active oxygen species (AOS), suggesting that during cryptogein signal transduction the balance between specific protein kinase (PK) and PP activities was modified. To identify the phosphorylated proteins that could be involv…

0106 biological sciencesPhysiologyPhosphataseBiology01 natural sciencesFungal Proteins03 medical and health scienceschemistry.chemical_compound[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]TobaccoPhosphoprotein Phosphatasesmedicine[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyStaurosporineProtein phosphorylationEnzyme InhibitorsPhosphorylationProtein Kinase InhibitorsComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesFungal proteinIon TransportAlgal ProteinsGeneral MedicinePhosphoproteinsElicitorPlants ToxicchemistryBiochemistryPhosphorylationCalciumSignal transductionAgronomy and Crop ScienceSignal Transduction010606 plant biology & botanyCalyculinmedicine.drugMolecular Plant-Microbe Interactions®
researchProduct

Elicitor and resistance-inducing activities of -1,4 cellodextrins in grapevine, comparison with -1,3 glucans and -1,4 oligogalacturonides

2007

Cellodextrins (CD), water-soluble derivatives of cellulose composed of beta-1,4 glucoside residues, have been shown to induce a variety of defence responses in grapevine (Vitis vinifera L.) cells. The larger oligomers of CD rapidly induced transient generation of H2O2 and elevation in free cytosolic calcium, followed by a differential expression of genes encoding key enzymes of the phenylpropanoid pathway and pathogenesis-related (PR) proteins as well as stimulation of chitinase and beta-1,3 glucanase activities. Most of these defence reactions were also induced by linear beta-1,3 glucans (betaGlu) and alpha-1,4 oligogalacturonides (OGA) of different degree of polymerization (DP), but the i…

0106 biological sciencesPhysiology[SDV]Life Sciences [q-bio]Plant ScienceBiology01 natural sciences03 medical and health sciencesGene expressionBotanyGRAPEVINE[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologychemistry.chemical_classification0303 health sciencesPhenylpropanoidINDUCED RESISTANCEOligosaccharideGlucanaseElicitor[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyCytosolEnzymechemistryBiochemistryChitinasebiology.proteinCELLODEXTRINSDEFENCE RESPONSES010606 plant biology & botany
researchProduct

Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein

1994

Changes in plasmalemma ion fluxes were observed when tobacco (Nicotiana tabacum) cells were treated with cryptogein, a proteinaceous elicitor from Phytophthora cryptogea. A strong alkalization of the culture medium, accompanied by a leakage of potassium, was induced within a few minutes of treatment. These effects reached a maximum after 30 to 40 min and lasted for several hours. This treatment also resulted in a rapid, but transient, production of activated oxygen species. All these physiological responses were fully sensitive to staurosporine, a known protein kinase inhibitor. Furthermore, a study of protein phosphorylation showed that cryptogein induced a staurosporine-sensitive phosphor…

0106 biological sciencesPhysiologymedicine.drug_classNicotiana tabacumPlant Sciencemacromolecular substances01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciences[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsGeneticsmedicineStaurosporineProtein phosphorylationComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesbiologyPhytophthora cryptogeafood and beveragesCULTURE DE TISSUSProtein kinase inhibitorbiology.organism_classificationElicitorBiochemistryCell culturePhosphorylation010606 plant biology & botanymedicine.drugResearch Article
researchProduct

Nuclear protein kinases: still enigmatic components in plant cell signalling

2010

International audience; Plants constantly face changing conditions in their environment. Unravelling the transduction mechanisms from signal perception at the plasma membrane level down to gene expression in the nucleus is a fascinating challenge. Protein phosphorylation, catalysed by protein kinases, is one of the major posttranslational modifications involved in the specificity, kinetic(s) and intensity of a signal transduction pathway. Although commonly assumed, the involvement of nuclear protein kinases in signal transduction is often poorly characterized. In particular, both their regulation and mode of action remain to be elucidated and may lead to the unveiling of new original mechan…

0106 biological sciencesPhysiologyp38 mitogen-activated protein kinasesPROTEIN KINASENUCLEAR TRANSLOCATIONPlant ScienceBiology01 natural sciencesSecond Messenger Systems03 medical and health sciencesNCK1Protein phosphorylationNuclear proteinNUCLEUS030304 developmental biologyPROTEIN (DE)PHOSPHORYLATION0303 health sciencesGRB10SIGNAL TRANSDUCTIONNuclear ProteinsAutophagy-related protein 13PlantsCell biology[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyBiochemistryCDC37Mitogen-activated protein kinasebiology.proteinProtein Kinases010606 plant biology & botany
researchProduct

Nitric oxide signalling in plants: interplays with Ca2+ and protein kinase

2008

International audience; Much attention has been paid to nitric oxide (NO)research since its discovery as a physiological mediator of plant defence responses. In recent years, newer roles have been attributed to NO, ranging from root development to stomatal closure. The molecular mechanisms underlying NO action in plants are just begun to emerge. The currently available data illustrate that NO can directly influence the activity of target proteins through nitrosylation and has the capacity to act as a Ca2+-mobilizing intracellular messenger. The interplay between NO and Ca2+ has important functional implications, expanding and enriching the possibilities for modulating transduction processes…

0106 biological sciencesSIGNALLINGPhysiologyPlant ScienceBiology01 natural sciencesNitric oxide03 medical and health sciencesTransduction (genetics)chemistry.chemical_compoundSNF-RELATED PROTEIN KINASE 2Mediator030304 developmental biology0303 health sciencesADP-RIBOSE CYCLIQUEPROTEIN KINASESKinaseCALCIUM 2+NitrosylationPlants[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/BotanicsNitric oxide metabolismCell biologySignallingBiochemistrychemistryCalciumIntracellularNITRIC OXIDE010606 plant biology & botanySignal Transduction
researchProduct

Ergosterol elicits oxidative burst in tobacco cells via phospholipase A2 and protein kinase C signal pathway

2004

Ergosterol, a typical fungal sterol, induced in tobacco (Nicotiana tabacum L. cv. Xanthi) suspension cells the synthesis of reactive oxygen species and alkalization of the external medium that are dependent on the mobilization of calcium from internal stores. We used specific inhibitors to elucidate the signal pathway triggered by ergosterol compared with cryptogein, a proteinaceous elicitor of Phytophthora cryptogea. HerbimycinA and genistein, inhibitors of tyrosine protein kinases, had no effect on the oxidative burst and pH changes induced by bothelicitors.Similarly,H-89,aninhibitorofproteinkinaseA,hadnoeffectontheinductionofthesedefensereactions.However,theresponse to both elicitors was…

0106 biological sciencesTime FactorsCell SurvivalPhysiologyPlant Science01 natural sciencesPhospholipases AFungal Proteins03 medical and health scienceschemistry.chemical_compoundPhospholipase A2ErgosterolPROTEINE KINASE CTobacco[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular Biologypolycyclic compoundsGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyEnzyme InhibitorsEstrenesProtein kinase ACells CulturedProtein Kinase CProtein kinase CComputingMilieux_MISCELLANEOUS030304 developmental biologySulfonamides0303 health sciencesErgosterolbiologyPhospholipase CAlgal ProteinsNeomycinIsoquinolinesPyrrolidinonesSterolElicitorRespiratory burstOxidative StressPhospholipases A2chemistryBiochemistryType C Phospholipasesbiology.proteinlipids (amino acids peptides and proteins)Signal Transduction010606 plant biology & botany
researchProduct

Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells

2011

International audience; The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca2þ]cyt which intensity dep…

0106 biological sciencesTime FactorsPhysiologyNicotiana tabacumPlant SciencesterolsSecond Messenger Systemstobacco01 natural scienceschemistry.chemical_compoundCytosolpolycyclic compoundsPhosphorylationCalcium signalingreactive oxygen species0303 health sciencesErgosterolelicitorbiologyergosterolHydrogen-Ion ConcentrationPlants Genetically ModifiedRecombinant ProteinsCell biologyBiochemistrySecond messenger systemReactive oxygen species; Calcium signature; Elicitor; Signal transduction; MAPKs; tobaccolipids (amino acids peptides and proteins)Protonssignal transductionCell Survivalnicotiana plumbaginifoliachemistry.chemical_elementnicotiana tabacumoxydantCalciumcalcium signature03 medical and health sciencesAequorinMAPKsBAPTAGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCalcium Signaling030304 developmental biologyMitogen-Activated Protein Kinase KinasesCalcium metabolismHydrogen Peroxidebiochemical phenomena metabolism and nutritionbiology.organism_classificationCytosolchemistryCalciumApoproteins010606 plant biology & botany
researchProduct

How to Deal with Uninvited Guests in Wine: Copper and Copper-containing Oxidases

2020

Copper is one of the most frequently occurring heavy metals in must and wine. It is introduced by pesticides, brass fittings, and as copper sulphate for treatment of reductive off-flavors. At higher concentrations, copper has harmful effects on the wine. It contributes to the oxidation of wine ingredients, browning reactions, cloudiness, inhibition of microorganisms, and wine fermentation. Last but not least, there is also a danger to the consumer. At present, some physicochemical methods exist to reduce the copper content in must and wine, but they all have their shortcomings. A possible solution is the biosorption of metals by yeasts or lactobacilli. Copper can also reach must and wine in…

0106 biological sciencesTyrosinasechemistry.chemical_elementcopper <i>casse</i>wine browningPlant Science01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)0404 agricultural biotechnologytannins010608 biotechnologyBrowningFood scienceBotrytis cinereaWineLaccaseFermentation in winemakinglcsh:TP500-660biologyChemistrybentoniteBiosorption04 agricultural and veterinary sciencesbiology.organism_classificationlcsh:Fermentation industries. Beverages. Alcohol040401 food scienceCopperphenoloxidasesFood SciencebiosorptionFermentation
researchProduct

Antioxidant activity and enzymes inhibitory properties of several extracts from two Moroccan Asteraceae species

2018

Abstract The present work reports investigation on phenolic compounds, antioxidant activity and enzyme inhibitory activities (acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase and α-glucosidase) of different extracts from two Moroccan Asteraceae species; Bubonium imbricatum Cav. and Cladanthus arabicus (L.) Cass. B. imbricatum extracts contained the highest amounts of phenolics and flavonoids, and also exhibited higher antioxidant activity. In this species, the highest total phenolic (1611.13 ± 14.23 μmolGAE/gextract) and flavonoid (376.11 ± 8.22 μmolQE/gextract) contents were observed in aqueous-methanol extract obtained by maceration. Further, UHPLC–MS analysis of C. arab…

0106 biological scienceschemistry.chemical_classificationABTSSettore CHIM/10 - Chimica Degli Alimenti010405 organic chemistryDPPHTyrosinaseFlavonoidAcetylcholinesterase; Bubonium imbricatum Cav.; Butyrylcholinesterase; Cladanthus arabicus (L.) Cass.; Phenolics; Tyrosinase; α-Amylase; α-Glucosidase; Plant SciencePlant Science01 natural sciencesDiosmetin0104 chemical scienceschemistry.chemical_compoundBubonium imbricatum Cav. Cladanthus arabicus (L.) Cass. Phenolics Acetylcholinesterase Butyrylcholinesterase Tyrosinase α-Amylase α-GlucosidasechemistryApigeninMaceration (wine)Food scienceLuteolin010606 plant biology & botany
researchProduct

Nitric Oxide Signalling in Plants: Cross-Talk With Ca2+, Protein Kinases and Reactive Oxygen Species

2010

International audience; Nitric oxide (NO) is a gaseous free radical recognized as a ubiquitous signal transducer that contributes to various biological processes in animals. It exerts most of its effects by regulating the activities of various proteins including Ca2+ channels, protein kinases and transcription factors. In plants, studies conducted over the past ten years revealed that NO also functions as an endogenous mediator in diverse physiological processes ranging from root development to stomatal closure. Its biological role as an intracellular plant messenger molecule, however, remains poorly understood. Here, we review the molecular basis of NO signaling in animals and discuss curr…

0106 biological scienceschemistry.chemical_classification[ SDV.BV ] Life Sciences [q-bio]/Vegetal Biology0303 health sciencesProgrammed cell deathReactive oxygen speciesKinaseEndogenous mediator01 natural sciencesNitric oxideCell biology03 medical and health scienceschemistry.chemical_compoundchemistry[SDV.BV]Life Sciences [q-bio]/Vegetal BiologySignal transductionTranscription factorIntracellular030304 developmental biology010606 plant biology & botany
researchProduct