Search results for "Indexing"
showing 10 items of 94 documents
Lightweight algorithms for constructing and inverting the BWT of string collections
2013
Recent progress in the field of \{DNA\} sequencing motivates us to consider the problem of computing the Burrows‚ÄìWheeler transform (BWT) of a collection of strings. A human genome sequencing experiment might yield a billion or more sequences, each 100 characters in length. Such a dataset can now be generated in just a few days on a single sequencing machine. Many algorithms and data structures for compression and indexing of text have the \{BWT\} at their heart, and it would be of great interest to explore their applications to sequence collections such as these. However, computing the \{BWT\} for 100 billion characters or more of data remains a computational challenge. In this work we ad…
Interactive Gradually Generating Relevance Query Refinement Under the Human-Mediated Scenario in Multilingual Settings
2016
As opposed to query modelling, relevance generating interactive query refinement (QR) is a technique aimed at exploiting syntax variations of gradually extended, being removed or replaced with some other keywords query, which depending on the factors like e.g. the information resource, the database structure, or the keyword alignment, facilitates significantly the searching process. Therefore our motivation is to explore the dynamism of the precision trend depended upon the factors analyzed. For a couple of language pairs which constitute multilingual settings, we develop a user-centred framework that imposes distributed search optimization. Our data set contains variety of query types subm…
Content Based Indexing of Image and Video Databases by Global and Shape Features
1996
Indexing and retrieval methods based on the image content are required to effectively use information from the large repositories of digital images and videos currently available. Both global (colour, texture, motion, etc.) and local (object shape, etc.) features are needed to perform a reliable content based retrieval. We present a method for automatic extraction of global image features, like colour and motion parameters, and their use for data restriction in video database querying. Further retrieval is therefore accomplished, in a restricted set of images, by shape feature (skeleton, local symmetry moments, correlation, etc.) local search. The proposed indexing methodology has been deve…
Indexed Two-Dimensional String Matching
2016
A New Class of Searchable and Provably Highly Compressible String Transformations
2019
The Burrows-Wheeler Transform is a string transformation that plays a fundamental role for the design of self-indexing compressed data structures. Over the years, researchers have successfully extended this transformation outside the domains of strings. However, efforts to find non-trivial alternatives of the original, now 25 years old, Burrows-Wheeler string transformation have met limited success. In this paper we bring new lymph to this area by introducing a whole new family of transformations that have all the "myriad virtues" of the BWT: they can be computed and inverted in linear time, they produce provably highly compressible strings, and they support linear time pattern search direc…
Unifying Textual and Visual Cues for Content-Based Image Retrieval on the World Wide Web
1999
A system is proposed that combines textual and visual statistics in a single index vector for content-based search of a WWW image database. Textual statistics are captured in vector form using latent semantic indexing based on text in the containing HTML document. Visual statistics are captured in vector form using color and orientation histograms. By using an integrated approach, it becomes possible to take advantage of possible statistical couplings between the content of the document (latent semantic content) and the contents of images (visual statistics). The combined approach allows improved performance in conducting content-based search. Search performance experiments are reported for…
Video Indexing Using MPEG Motion Compensation Vectors
2003
In the last years a lot of work has been done on color, textural, structural and semantic indexing of "content-based" video databases. Motion-based video indexing has been less explored, with approaches generally based on the analysis of optical flows. Compressed videos require the decompression of the sequences and the computation of optical flows, two steps computationally heavy. In this paper we propose some methods to index videos by motion features (mainly related to camera motion) and by motion-based spatial segmentation of frames, in a fully automatic way. Our idea is to use MPEG motion vectors as an alternative to optical flows. Their extraction is very simple and fast; it doesn't r…
Video indexing using optical flow field
2002
The increasing development of advanced multimedia applications requires new technologies for organizing and retrieving by content databases of digital video. Several content based features (color, texture, motion, etc.) are needed to perform a reliable content based retrieval. We present a method for automatic motion based video indexing and retrieval. A prototypal system has been developed to prove the validity of our approach. Our system automatically splits a video into a sequence of shots, extracts a few representative frames (said r-frames) from each shot and computes some motion based features related to the optical flow field. Motion based queries are then performed either in a quali…
A Study on Classification Methods Applied to Sentiment Analysis
2013
Sentiment analysis is a new area of research in data mining that concerns the detection of opinions and/or sentiments in texts. This work focuses on the application and the comparison of three classification techniques over a text corpus composed of reviews of commercial products in order to detect opinions about them. The chosen domain is about "perfumes", and user opinions composing the corpus are written in Italian language. The proposed approach is completely data-driven: a Term Frequency / Inverse Document Frequency (TFIDF) terms selection procedure has been applied in order to make computation more efficient, to improve the classification results and to manage some issues related to t…
Motion and Color Based Video Indexing and Retrieval
1996
In this paper we present a method for automatic motion and color based video indexing and retrieval. Our system automatically splits a video into a sequence of shots and extracts a few representative frames (r-frames) from each shot. For each r-frame we compute the optical flow field; motion features are then derived from the flow field. Color features are related to the three-dimensional RGB color histogram. Queries (direct or by example) are based on these features. Obtained results proved that motion and color based querying can play a central role in content based video retrieval