Search results for "Induced character"

showing 10 items of 25 documents

The number of lifts of a Brauer character with a normal vertex

2011

AbstractIn this paper we examine the behavior of lifts of Brauer characters in p-solvable groups. In the main result, we show that if φ∈IBr(G) has a normal vertex Q and either p is odd or Q is abelian, then the number of lifts of φ is at most |Q:Q′|. As a corollary, we prove that if φ∈IBr(G) has an abelian vertex subgroup Q, then the number of lifts of φ in Irr(G) is at most |Q|.

CombinatoricsVertex (graph theory)LiftsAlgebra and Number TheoryBrauer's theorem on induced charactersCorollarySolvable groupAbelian groupFinite groupsSolvable groupsBrauer charactersMathematicsJournal of Algebra
researchProduct

Complex group algebras of finite groups: Brauer’s Problem 1

2005

Brauer’s Problem 1 asks the following: what are the possible complex group algebras of finite groups? It seems that with the present knowledge of representation theory it is not possible to settle this question. The goal of this paper is to announce a partial solution to this problem. We conjecture that if the complex group algebra of a finite group does not have more than a fixed number m m of isomorphic summands, then its dimension is bounded in terms of m m . We prove that this is true for every finite group if it is true for the symmetric groups.

Computer Science::Machine LearningModular representation theoryPure mathematicsFinite groupBrauer's theorem on induced charactersGroup (mathematics)General MathematicsMathematicsofComputing_GENERALComputer Science::Digital LibrariesRepresentation theoryCombinatoricsStatistics::Machine LearningGroup of Lie typeSymmetric groupComputer Science::Mathematical SoftwareComputer Science::Programming LanguagesBrauer groupMathematicsElectronic Research Announcements of the American Mathematical Society
researchProduct

On the orders of zeros of irreducible characters

2009

Let G be a finite group and p a prime number. We say that an element g in G is a vanishing element of G if there exists an irreducible character χ of G such that χ (g) = 0. The main result of this paper shows that, if G does not have any vanishing element of p-power order, then G has a normal Sylow p-subgroup. Also, we prove that this result is a generalization of some classical theorems in Character Theory of finite groups. © 2008 Elsevier Inc. All rights reserved.

Discrete mathematicsFinite groupPure mathematicsBrauer's theorem on induced charactersAlgebra and Number Theoryirreducible character zeroCharacter theorySylow theoremsPrime numberIrreducible elementFinite groupsCharacter (mathematics)Order (group theory)Zeros of charactersCharactersMathematics
researchProduct

Brauer characters and coprime action

2016

Abstract It is an open problem to show that under a coprime action, the number of invariant Brauer characters of a finite group is the number of the Brauer characters of the fixed point subgroup. We prove that this is true if the non-abelian simple groups satisfy a stronger condition.

Discrete mathematicsModular representation theoryPure mathematicsFinite groupAlgebra and Number TheoryBrauer's theorem on induced charactersCoprime integers010102 general mathematics02 engineering and technologyFixed point021001 nanoscience & nanotechnology01 natural sciencesSimple group0101 mathematicsInvariant (mathematics)Mathematics::Representation Theory0210 nano-technologyBrauer groupMathematicsJournal of Algebra
researchProduct

Non-vanishing elements of finite groups

2010

AbstractLet G be a finite group, and let Irr(G) denote the set of irreducible complex characters of G. An element x of G is non-vanishing if, for every χ in Irr(G), we have χ(x)≠0. We prove that, if x is a non-vanishing element of G and the order of x is coprime to 6, then x lies in the Fitting subgroup of G.

Finite groupBrauer's theorem on induced charactersAlgebra and Number TheoryCoprime integers010102 general mathematics0102 computer and information sciences01 natural sciencesFitting subgroupFinite groupsCombinatorics010201 computation theory & mathematicsOrder (group theory)Zeros of charactersCharacters0101 mathematicsElement (category theory)MathematicsJournal of Algebra
researchProduct

Degrees of rational characters of finite groups

2010

Abstract A classical theorem of John Thompson on character degrees states that if the degree of any complex irreducible character of a finite group G is 1 or divisible by a prime p, then G has a normal p-complement. In this paper, we consider fields of values of characters and prove some improvements of this result.

Finite groupMathematics(all)Brauer's theorem on induced charactersGeneral Mathematics010102 general mathematics01 natural sciencesPrime (order theory)CombinatoricsNormal p-complementCharacter (mathematics)Rational characterNormal p-complement0103 physical sciencesDegree (angle)010307 mathematical physics0101 mathematicsClassical theoremMathematicsAdvances in Mathematics
researchProduct

Finite groups with real-valued irreducible characters of prime degree

2008

Abstract In this paper we describe the structure of finite groups whose real-valued nonlinear irreducible characters have all prime degree. The more general situation in which the real-valued irreducible characters of a finite group have all squarefree degree is also considered.

Finite groupReal charactersBrauer's theorem on induced charactersAlgebra and Number TheoryDegree (graph theory)Mathematics::Number TheoryStructure (category theory)Prime elementSquare-free integerCharacter degreesCombinatoricsCharacter tableMathematics::Representation TheoryCharacter groupMathematicsJournal of Algebra
researchProduct

The First Main Theorem

1998

Kernel (algebra)Pure mathematicsBrauer's theorem on induced charactersMin-max theoremBlock (programming)Defect groupHomomorphismClassification of finite simple groupsAlgebra over a fieldMathematics
researchProduct

A characteristic subgroup and kernels of Brauer characters

2005

If G is finite group and P is a Sylow p-subgroup of G, we prove that there is a unique largest normal subgroup L of G such that L ⋂ P = L ⋂ NG (P). If G is p-solvable, then L is the intersection of the kernels of the irreducible Brauer characters of G of degree not divisible by p.

Normal subgroupCombinatoricsMaximal subgroupTorsion subgroupBrauer's theorem on induced charactersGeneral MathematicsSylow theoremsCommutator subgroupCharacteristic subgroupFitting subgroupMathematicsBulletin of the Australian Mathematical Society
researchProduct

Characters of relative p'-degree over normal subgroups

2013

Let Z be a normal subgroup of a finite group G , let ??Irr(Z) be an irreducible complex character of Z , and let p be a prime number. If p does not divide the integers ?(1)/?(1) for all ??Irr(G) lying over ? , then we prove that the Sylow p -subgroups of G/Z are abelian. This theorem, which generalizes the Gluck-Wolf Theorem to arbitrary finite groups, is one of the principal obstacles to proving the celebrated Brauer Height Zero Conjecture

Normal subgroupDiscrete mathematicsFinite groupConjectureBrauer's theorem on induced charactersSylow theoremsZero (complex analysis)Prime numberMathematics::Group TheoryMathematics (miscellaneous)Statistics Probability and UncertaintyAbelian groupMathematics::Representation TheoryMathematicsAnnals of Mathematics
researchProduct